ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
(Generate patch)

Comparing trunk/oopsePaper/analysis.tex (file contents):
Revision 695 by mmeineke, Wed Aug 13 21:22:44 2003 UTC vs.
Revision 818 by gezelter, Fri Oct 24 21:27:59 2003 UTC

# Line 1 | Line 1
1 < \section{Analysis Code}
1 > \section{\label{sec:analysis}Analysis Code}
2  
3 < \subsection{Static Property Analysis}
3 > \subsection{\label{subSec:staticProbs}Static Property Analysis}
4   The static properties of the trajectories are analyzed with the
5 < program staticProps. The code is capable of calculating the following
5 > program \texttt{staticProps}. The code is capable of calculating the following
6   pair correlations between species A and B:
7   \begin{itemize}
8          \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
# Line 34 | Line 34 | correlate alignment on directional entities. $g_{\text
34   Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
35   correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
36   \theta)$ is defined as follows:
37 < \begin{multline}
38 < g_{\text{AB}}(r, \cos \theta) = \\
39 <        \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
40 <        \sum_{i \in \text{A}} \sum_{j \in \text{B}}
41 <        \delta( \cos \theta - \cos \theta_{ij})
42 <        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta}
43 < \end{multline}
37 > \begin{equation}
38 > g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle  
39 > \sum_{i \in \text{A}} \sum_{j \in \text{B}}  
40 > \delta( \cos \theta - \cos \theta_{ij})
41 > \delta( r - |\mathbf{r}_{ij}|) \rangle
42 > \label{eq:gofrCosTheta}
43 > \end{equation}
44   Where
45   \begin{equation*}
46   \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
# Line 50 | Line 50 | The second two dimensional histogram is of the form:
50   $\mathbf{r}_{ij}$.
51  
52   The second two dimensional histogram is of the form:
53 < \begin{multline}
54 < g_{\text{AB}}(r, \cos \omega) = \\
53 > \begin{equation}
54 > g_{\text{AB}}(r, \cos \omega) =
55          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
56          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
57          \delta( \cos \omega - \cos \omega_{ij})
58          \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
59 < \end{multline}
59 > \end{equation}
60   Here
61   \begin{equation*}
62   \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
# Line 66 | Line 66 | dimensional pair correlation of the form:
66  
67   The static analysis code is also cable of calculating a three
68   dimensional pair correlation of the form:
69 < \begin{multline}\label{eq:gofrXYZ}
70 < g_{\text{AB}}(x, y, z) = \\
69 > \begin{equation}\label{eq:gofrXYZ}
70 > g_{\text{AB}}(x, y, z) =
71          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
72          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
73          \delta( x - x_{ij})
74          \delta( y - y_{ij})
75          \delta( z - z_{ij}) \rangle
76 < \end{multline}
76 > \end{equation}
77   Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
78   components respectively of vector $\mathbf{r}_{ij}$.
79  
# Line 90 | Line 90 | entities as a function of their distance from each oth
90   correlation that gives the average correlation of two directional
91   entities as a function of their distance from each other.
92  
93 < \subsection{Dynamic Property Analysis}
93 > All static properties are calculated on a frame by frame basis. The
94 > trajectory is read a single frame at a time, and the appropriate
95 > calculations are done on each frame. Once one frame is finished, the
96 > next frame is read in, and a running average of the property being
97 > calculated is accumulated in each frame. The program allows for the
98 > user to specify more than one property be calculated in single run,
99 > preventing the need to read a file multiple times.
100 >
101 > \subsection{\label{dynamicProps}Dynamic Property Analysis}
102 >
103   The dynamic properties of a trajectory are calculated with the program
104 < dynamicProps.
104 > \texttt{dynamicProps}. The program will calculate the following properties:
105 > \begin{gather}
106 > \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
107 > \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
108 > \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
109 > \end{gather}
110 >
111 > Eq.~\ref{eq:rms} is the root mean square displacement
112 > function. Eq.~\ref{eq:velCorr} and Eq.~\ref{eq:angularVelCorr} are the
113 > velocity and angular velocity correlation functions respectively. The
114 > latter is only applicable to directional species in the simulation.
115 >
116 > The \texttt{dynamicProps} program handles he file in a manner different from
117 > \texttt{staticProps}. As the properties calculated by this program are time
118 > dependent, multiple frames must be read in simultaneously by the
119 > program. For small trajectories this is no problem, and the entire
120 > trajectory is read into memory. However, for long trajectories of
121 > large systems, the files can be quite large. In order to accommodate
122 > large files, \texttt{dynamicProps} adopts a scheme whereby two blocks of memory
123 > are allocated to read in several frames each.
124 >
125 > In this two block scheme, the correlation functions are first
126 > calculated within each memory block, then the cross correlations
127 > between the frames contained within the two blocks are
128 > calculated. Once completed, the memory blocks are incremented, and the
129 > process is repeated. A diagram illustrating the process is shown in
130 > Fig.~\ref{fig:dynamicPropsMemory}. As was the case with \texttt{staticProps},
131 > multiple properties may be calculated in a single run to avoid
132 > multiple reads on the same file.  
133 >
134 > \begin{figure}
135 > \epsfxsize=6in
136 > \epsfbox{dynamicPropsMem.eps}
137 > \caption{This diagram illustrates the dynamic memory allocation used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
138 > \label{fig:dynamicPropsMemory}
139 > \end{figure}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines