ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/oopsePaper.tex
Revision: 1121
Committed: Mon Apr 19 21:00:24 2004 UTC (20 years, 2 months ago) by mmeineke
Content type: application/x-tex
File size: 98240 byte(s)
Log Message:
Just copied over the changes from the dissertation.
Also converted the figures to pdf.
All revisions now take place on the oopsePaper.tex file

File Contents

# Content
1 \documentclass[11pt]{article}
2 \usepackage{amsmath}
3 \usepackage{amssymb}
4 \usepackage{endfloat}
5 %\usepackage{berkeley}
6 \usepackage{listings}
7 \usepackage{graphicx}
8 \usepackage[ref]{overcite}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \pagestyle{plain}
12 \pagenumbering{arabic}
13 \oddsidemargin 0.0cm \evensidemargin 0.0cm
14 \topmargin -21pt \headsep 10pt
15 \textheight 9.0in \textwidth 6.5in
16 \brokenpenalty=10000
17 \renewcommand{\baselinestretch}{1.2}
18 \renewcommand\citemid{\ } % no comma in optional reference note
19
20 \begin{document}
21 \lstset{language=C,float,frame=tblr,frameround=tttt}
22 \renewcommand{\lstlistingname}{Scheme}
23 \title{{\sc oopse}: An Open Source Object-Oriented Parallel Simulation
24 Engine for Molecular Dynamics}
25
26 \author{Matthew A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher J. Fennell and J. Daniel Gezelter\\
27 Department of Chemistry and Biochemistry\\
28 University of Notre Dame\\
29 Notre Dame, Indiana 46556}
30
31 \date{\today}
32 \maketitle
33
34 \begin{abstract}
35 We detail the capabilities of a new open-source parallel simulation
36 package ({\sc oopse}) that can perform molecular dynamics simulations
37 on atom types that are missing from other popular packages. In
38 particular, {\sc oopse} is capable of performing orientational
39 dynamics on dipolar systems, and it can handle simulations of metallic
40 systems using the embedded atom method ({\sc eam}).
41 \end{abstract}
42
43 \section{\label{sec:intro}Introduction}
44
45 When choosing to simulate a chemical system with molecular dynamics,
46 there are a variety of options available. For simple systems, one
47 might consider writing one's own programming code. However, as systems
48 grow larger and more complex, building and maintaining code for the
49 simulations becomes a time consuming task. In such cases it is usually
50 more convenient for a researcher to turn to pre-existing simulation
51 packages. These packages, such as {\sc amber}\cite{pearlman:1995} and
52 {\sc charmm}\cite{Brooks83}, provide powerful tools for researchers to
53 conduct simulations of their systems without spending their time
54 developing a code base to conduct their research. This then frees them
55 to perhaps explore experimental analogues to their models.
56
57 Despite their utility, problems with these packages arise when
58 researchers try to develop techniques or energetic models that the
59 code was not originally designed to simulate. Examples of techniques
60 and energetics not commonly implemented include; dipole-dipole
61 interactions, rigid body dynamics, and metallic potentials. When faced
62 with these obstacles, a researcher must either develop their own code
63 or license and extend one of the commercial packages. What we have
64 elected to do is develop a body of simulation code capable of
65 implementing the types of models upon which our research is based.
66
67 In developing {\sc oopse}, we have adhered to the precepts of Open
68 Source development, and are releasing our source code with a
69 permissive license. It is our intent that by doing so, other
70 researchers might benefit from our work, and add their own
71 contributions to the package. The license under which {\sc oopse} is
72 distributed allows any researcher to download and modify the source
73 code for their own use. In this way further development of {\sc oopse}
74 is not limited to only the models of interest to ourselves, but also
75 those of the community of scientists who contribute back to the
76 project.
77
78 We have structured this chapter to first discuss the empirical energy
79 functions that {\sc oopse } implements in
80 Sec.~\ref{oopseSec:empiricalEnergy}. Following that is a discussion of
81 the various input and output files associated with the package
82 (Sec.~\ref{oopseSec:IOfiles}). Sec.~\ref{oopseSec:mechanics}
83 elucidates the various Molecular Dynamics algorithms {\sc oopse}
84 implements in the integration of the Newtonian equations of
85 motion. Basic analysis of the trajectories obtained from the
86 simulation is discussed in Sec.~\ref{oopseSec:props}. Program design
87 considerations are presented in Sec.~\ref{oopseSec:design}. And
88 lastly, Sec.~\ref{oopseSec:conclusion} concludes the chapter.
89
90 \section{\label{oopseSec:empiricalEnergy}The Empirical Energy Functions}
91
92 \subsection{\label{oopseSec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
93
94 The basic unit of an {\sc oopse} simulation is the atom. The
95 parameters describing the atom are generalized to make the atom as
96 flexible a representation as possible. They may represent specific
97 atoms of an element, or be used for collections of atoms such as
98 methyl and carbonyl groups. The atoms are also capable of having
99 directional components associated with them (\emph{e.g.}~permanent
100 dipoles). Charges, permanent dipoles, and Lennard-Jones parameters for
101 a given atom type are set in the force field parameter files.
102
103 \begin{lstlisting}[float,caption={[Specifier for molecules and atoms] A sample specification of an Ar molecule},label=sch:AtmMole]
104 molecule{
105 name = "Ar";
106 nAtoms = 1;
107 atom[0]{
108 type="Ar";
109 position( 0.0, 0.0, 0.0 );
110 }
111 }
112 \end{lstlisting}
113
114
115 Atoms can be collected into secondary structures such as rigid bodies
116 or molecules. The molecule is a way for {\sc oopse} to keep track of
117 the atoms in a simulation in logical manner. Molecular units store the
118 identities of all the atoms and rigid bodies associated with
119 themselves, and are responsible for the evaluation of their own
120 internal interactions (\emph{i.e.}~bonds, bends, and torsions). Scheme
121 \ref{sch:AtmMole} shows how one creates a molecule in a ``model'' or
122 \texttt{.mdl} file. The position of the atoms given in the
123 declaration are relative to the origin of the molecule, and is used
124 when creating a system containing the molecule.
125
126 As stated previously, one of the features that sets {\sc oopse} apart
127 from most of the current molecular simulation packages is the ability
128 to handle rigid body dynamics. Rigid bodies are non-spherical
129 particles or collections of particles that have a constant internal
130 potential and move collectively.\cite{Goldstein01} They are not
131 included in most simulation packages because of the algorithmic
132 complexity involved in propagating orientational degrees of
133 freedom. Until recently, integrators which propagate orientational
134 motion have been much worse than those available for translational
135 motion.
136
137 Moving a rigid body involves determination of both the force and
138 torque applied by the surroundings, which directly affect the
139 translational and rotational motion in turn. In order to accumulate
140 the total force on a rigid body, the external forces and torques must
141 first be calculated for all the internal particles. The total force on
142 the rigid body is simply the sum of these external forces.
143 Accumulation of the total torque on the rigid body is more complex
144 than the force because the torque is applied to the center of mass of
145 the rigid body. The torque on rigid body $i$ is
146 \begin{equation}
147 \boldsymbol{\tau}_i=
148 \sum_{a}\biggl[(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
149 + \boldsymbol{\tau}_{ia}\biggr],
150 \label{eq:torqueAccumulate}
151 \end{equation}
152 where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
153 position of the center of mass respectively, while $\mathbf{f}_{ia}$,
154 $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
155 position of, and torque on the component particles of the rigid body.
156
157 The summation of the total torque is done in the body fixed axis of
158 each rigid body. In order to move between the space fixed and body
159 fixed coordinate axes, parameters describing the orientation must be
160 maintained for each rigid body. At a minimum, the rotation matrix
161 ($\mathsf{A}$) can be described by the three Euler angles ($\phi,
162 \theta,$ and $\psi$), where the elements of $\mathsf{A}$ are composed of
163 trigonometric operations involving $\phi, \theta,$ and
164 $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
165 inherent in using the Euler angles, the four parameter ``quaternion''
166 scheme is often used. The elements of $\mathsf{A}$ can be expressed as
167 arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
168 and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
169 performance enhancements, particularly for very small
170 systems.\cite{Evans77}
171
172 {\sc oopse} utilizes a relatively new scheme that propagates the
173 entire nine parameter rotation matrix. Further discussion
174 on this choice can be found in Sec.~\ref{oopseSec:integrate}. An example
175 definition of a rigid body can be seen in Scheme
176 \ref{sch:rigidBody}. The positions in the atom definitions are the
177 placements of the atoms relative to the origin of the rigid body,
178 which itself has a position relative to the origin of the molecule.
179
180 \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
181 molecule{
182 name = "TIP3P";
183 nAtoms = 3;
184 atom[0]{
185 type = "O_TIP3P";
186 position( 0.0, 0.0, -0.06556 );
187 }
188 atom[1]{
189 type = "H_TIP3P";
190 position( 0.0, 0.75695, 0.52032 );
191 }
192 atom[2]{
193 type = "H_TIP3P";
194 position( 0.0, -0.75695, 0.52032 );
195 }
196
197 nRigidBodies = 1;
198 rigidBody[0]{
199 nMembers = 3;
200 members(0, 1, 2);
201 }
202 }
203 \end{lstlisting}
204
205 \subsection{\label{sec:LJPot}The Lennard Jones Force Field}
206
207 The most basic force field implemented in {\sc oopse} is the
208 Lennard-Jones force field, which mimics the van der Waals interaction at
209 long distances, and uses an empirical repulsion at short
210 distances. The Lennard-Jones potential is given by:
211 \begin{equation}
212 V_{\text{LJ}}(r_{ij}) =
213 4\epsilon_{ij} \biggl[
214 \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
215 - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
216 \biggr],
217 \label{eq:lennardJonesPot}
218 \end{equation}
219 where $r_{ij}$ is the distance between particles $i$ and $j$,
220 $\sigma_{ij}$ scales the length of the interaction, and
221 $\epsilon_{ij}$ scales the well depth of the potential. Scheme
222 \ref{sch:LJFF} gives an example \texttt{.bass} file that
223 sets up a system of 108 Ar particles to be simulated using the
224 Lennard-Jones force field.
225
226 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones force field] A sample system using the Lennard-Jones force field.},label={sch:LJFF}]
227
228 #include "argon.mdl"
229
230 nComponents = 1;
231 component{
232 type = "Ar";
233 nMol = 108;
234 }
235
236 initialConfig = "./argon.init";
237
238 forceField = "LJ";
239 \end{lstlisting}
240
241 Because this potential is calculated between all pairs, the force
242 evaluation can become computationally expensive for large systems. To
243 keep the pair evaluations to a manageable number, {\sc oopse} employs
244 a cut-off radius.\cite{allen87:csl} The cutoff radius can either be
245 specified in the \texttt{.bass} file, or left as its default value of
246 $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones
247 length parameter present in the simulation. Truncating the calculation
248 at $r_{\text{cut}}$ introduces a discontinuity into the potential
249 energy and the force. To offset this discontinuity in the potential,
250 the energy value at $r_{\text{cut}}$ is subtracted from the
251 potential. This causes the potential to go to zero smoothly at the
252 cut-off radius, and preserves conservation of energy in integrating
253 the equations of motion. There still remains a discontinuity in the derivative (the forces), however, this does not significantly affect the dynamics.
254
255 Interactions between dissimilar particles requires the generation of
256 cross term parameters for $\sigma$ and $\epsilon$. These are
257 calculated through the Lorentz-Berthelot mixing
258 rules:\cite{allen87:csl}
259 \begin{equation}
260 \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
261 \label{eq:sigmaMix}
262 \end{equation}
263 and
264 \begin{equation}
265 \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}.
266 \label{eq:epsilonMix}
267 \end{equation}
268
269 \subsection{\label{oopseSec:DUFF}Dipolar Unified-Atom Force Field}
270
271 The dipolar unified-atom force field ({\sc duff}) was developed to
272 simulate lipid bilayers. The simulations require a model capable of
273 forming bilayers, while still being sufficiently computationally
274 efficient to allow large systems ($\sim$100's of phospholipids,
275 $\sim$1000's of waters) to be simulated for long times
276 ($\sim$10's of nanoseconds).
277
278 With this goal in mind, {\sc duff} has no point
279 charges. Charge-neutral distributions were replaced with dipoles,
280 while most atoms and groups of atoms were reduced to Lennard-Jones
281 interaction sites. This simplification cuts the length scale of long
282 range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, and allows
283 us to avoid the computationally expensive Ewald sum. Instead, we can
284 use neighbor-lists and cutoff radii for the dipolar interactions, or
285 include a reaction field to mimic larger range interactions.
286
287 As an example, lipid head-groups in {\sc duff} are represented as
288 point dipole interaction sites. By placing a dipole at the head
289 group's center of mass, our model mimics the charge separation found
290 in common phospholipid head groups such as
291 phosphatidylcholine.\cite{Cevc87} Additionally, a large Lennard-Jones
292 site is located at the pseudoatom's center of mass. The model is
293 illustrated by the red atom in Fig.~\ref{oopseFig:lipidModel}. The
294 water model we use to complement the dipoles of the lipids is our
295 reparameterization of the soft sticky dipole (SSD) model of Ichiye
296 \emph{et al.}\cite{liu96:new_model}
297
298 \begin{figure}
299 \centering
300 \includegraphics[width=\linewidth]{twoChainFig.pdf}
301 \caption[A representation of a lipid model in {\sc duff}]{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
302 is the bend angle, and $\mu$ is the dipole moment of the head group.}
303 \label{oopseFig:lipidModel}
304 \end{figure}
305
306 We have used a set of scalable parameters to model the alkyl groups
307 with Lennard-Jones sites. For this, we have borrowed parameters from
308 the TraPPE force field of Siepmann
309 \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
310 representation of n-alkanes, which is parametrized against phase
311 equilibria using Gibbs ensemble Monte Carlo simulation
312 techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
313 it generalizes the types of atoms in an alkyl chain to keep the number
314 of pseudoatoms to a minimum; the parameters for a unified atom such as
315 $\text{CH}_2$ do not change depending on what species are bonded to
316 it.
317
318 TraPPE also constrains all bonds to be of fixed length. Typically,
319 bond vibrations are the fastest motions in a molecular dynamic
320 simulation. Small time steps between force evaluations must be used to
321 ensure adequate energy conservation in the bond degrees of freedom. By
322 constraining the bond lengths, larger time steps may be used when
323 integrating the equations of motion. A simulation using {\sc duff} is
324 illustrated in Scheme \ref{sch:DUFF}.
325
326 \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion of a \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
327
328 #include "water.mdl"
329 #include "lipid.mdl"
330
331 nComponents = 2;
332 component{
333 type = "simpleLipid_16";
334 nMol = 60;
335 }
336
337 component{
338 type = "SSD_water";
339 nMol = 1936;
340 }
341
342 initialConfig = "bilayer.init";
343
344 forceField = "DUFF";
345
346 \end{lstlisting}
347
348 \subsection{\label{oopseSec:energyFunctions}{\sc duff} Energy Functions}
349
350 The total potential energy function in {\sc duff} is
351 \begin{equation}
352 V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
353 + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
354 \label{eq:totalPotential}
355 \end{equation}
356 where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
357 \begin{equation}
358 V^{I}_{\text{Internal}} =
359 \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
360 + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
361 + \sum_{i \in I} \sum_{(j>i+4) \in I}
362 \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
363 (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
364 \biggr].
365 \label{eq:internalPotential}
366 \end{equation}
367 Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
368 within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
369 for all 1, 4 bonded pairs. The pairwise portions of the internal
370 potential are excluded for atom pairs that are involved in the same bond, bend, or torsion. All other atom pairs within the molecule are subject to the LJ pair potential.
371
372
373 The bend potential of a molecule is represented by the following function:
374 \begin{equation}
375 V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2, \label{eq:bendPot}
376 \end{equation}
377 where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
378 (see Fig.~\ref{oopseFig:lipidModel}), $\theta_0$ is the equilibrium
379 bond angle, and $k_{\theta}$ is the force constant which determines the
380 strength of the harmonic bend. The parameters for $k_{\theta}$ and
381 $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
382
383 The torsion potential and parameters are also borrowed from TraPPE. It is
384 of the form:
385 \begin{equation}
386 V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
387 + c_2[1 + \cos(2\phi)]
388 + c_3[1 + \cos(3\phi)],
389 \label{eq:origTorsionPot}
390 \end{equation}
391 where:
392 \begin{equation}
393 \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
394 (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
395 \label{eq:torsPhi}
396 \end{equation}
397 Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
398 vectors between atoms $i$, $j$, $k$, and $l$. For computational
399 efficiency, the torsion potential has been recast after the method of
400 {\sc charmm},\cite{Brooks83} in which the angle series is converted to
401 a power series of the form:
402 \begin{equation}
403 V_{\text{torsion}}(\phi) =
404 k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
405 \label{eq:torsionPot}
406 \end{equation}
407 where:
408 \begin{align*}
409 k_0 &= c_1 + c_3, \\
410 k_1 &= c_1 - 3c_3, \\
411 k_2 &= 2 c_2, \\
412 k_3 &= 4c_3.
413 \end{align*}
414 By recasting the potential as a power series, repeated trigonometric
415 evaluations are avoided during the calculation of the potential energy.
416
417
418 The cross potential between molecules $I$ and $J$, $V^{IJ}_{\text{Cross}}$, is
419 as follows:
420 \begin{equation}
421 V^{IJ}_{\text{Cross}} =
422 \sum_{i \in I} \sum_{j \in J}
423 \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
424 (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
425 + V_{\text{sticky}}
426 (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
427 \biggr],
428 \label{eq:crossPotentail}
429 \end{equation}
430 where $V_{\text{LJ}}$ is the Lennard Jones potential,
431 $V_{\text{dipole}}$ is the dipole dipole potential, and
432 $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
433 (Sec.~\ref{oopseSec:SSD}). Note that not all atom types include all
434 interactions.
435
436 The dipole-dipole potential has the following form:
437 \begin{equation}
438 V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
439 \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
440 \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
441 -
442 3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
443 (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr].
444 \label{eq:dipolePot}
445 \end{equation}
446 Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
447 towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
448 are the orientational degrees of freedom for atoms $i$ and $j$
449 respectively. $|\mu_i|$ is the magnitude of the dipole moment of atom
450 $i$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation vector
451 of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is the
452 unit vector pointing along $\mathbf{r}_{ij}$
453 ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
454
455 To improve computational efficiency of the dipole-dipole interactions,
456 {\sc oopse} employs an electrostatic cutoff radius. This parameter can
457 be set in the \texttt{.bass} file, and controls the length scale over
458 which dipole interactions are felt. To compensate for the
459 discontinuity in the potential and the forces at the cutoff radius, we
460 have implemented a switching function to smoothly scale the
461 dipole-dipole interaction at the cutoff.
462 \begin{equation}
463 S(r_{ij}) =
464 \begin{cases}
465 1 & \text{if $r_{ij} \le r_t$},\\
466 \frac{(r_{\text{cut}} + 2r_{ij} - 3r_t)(r_{\text{cut}} - r_{ij})^2}
467 {(r_{\text{cut}} - r_t)^2}
468 & \text{if $r_t < r_{ij} \le r_{\text{cut}}$}, \\
469 0 & \text{if $r_{ij} > r_{\text{cut}}$.}
470 \end{cases}
471 \label{eq:dipoleSwitching}
472 \end{equation}
473 Here $S(r_{ij})$ scales the potential at a given $r_{ij}$, and $r_t$
474 is the taper radius some given thickness less than the electrostatic
475 cutoff. The switching thickness can be set in the \texttt{.bass} file.
476
477 \subsection{\label{oopseSec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
478
479 In the interest of computational efficiency, the default solvent used
480 by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
481 model.\cite{fennell04} The original SSD was developed by Ichiye
482 \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
483 water model proposed by Bratko, Blum, and
484 Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
485 with a Lennard-Jones core and a sticky potential that directs the
486 particles to assume the proper hydrogen bond orientation in the first
487 solvation shell. Thus, the interaction between two SSD water molecules
488 \emph{i} and \emph{j} is given by the potential
489 \begin{equation}
490 V_{ij} =
491 V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
492 (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
493 V_{ij}^{sp}
494 (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
495 \label{eq:ssdPot}
496 \end{equation}
497 where the $\mathbf{r}_{ij}$ is the position vector between molecules
498 \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
499 $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
500 orientations of the respective molecules. The Lennard-Jones and dipole
501 parts of the potential are given by equations \ref{eq:lennardJonesPot}
502 and \ref{eq:dipolePot} respectively. The sticky part is described by
503 the following,
504 \begin{equation}
505 u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
506 \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
507 \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
508 s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
509 \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
510 \label{eq:stickyPot}
511 \end{equation}
512 where $\nu_0$ is a strength parameter for the sticky potential, and
513 $s$ and $s^\prime$ are cubic switching functions which turn off the
514 sticky interaction beyond the first solvation shell. The $w$ function
515 can be thought of as an attractive potential with tetrahedral
516 geometry:
517 \begin{equation}
518 w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
519 \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
520 \label{eq:stickyW}
521 \end{equation}
522 while the $w^\prime$ function counters the normal aligned and
523 anti-aligned structures favored by point dipoles:
524 \begin{equation}
525 w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
526 (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
527 \label{eq:stickyWprime}
528 \end{equation}
529 It should be noted that $w$ is proportional to the sum of the $Y_3^2$
530 and $Y_3^{-2}$ spherical harmonics (a linear combination which
531 enhances the tetrahedral geometry for hydrogen bonded structures),
532 while $w^\prime$ is a purely empirical function. A more detailed
533 description of the functional parts and variables in this potential
534 can be found in the original SSD
535 articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
536
537 Since SSD/E is a single-point {\it dipolar} model, the force
538 calculations are simplified significantly relative to the standard
539 {\it charged} multi-point models. In the original Monte Carlo
540 simulations using this model, Ichiye {\it et al.} reported that using
541 SSD decreased computer time by a factor of 6-7 compared to other
542 models.\cite{liu96:new_model} What is most impressive is that these savings
543 did not come at the expense of accurate depiction of the liquid state
544 properties. Indeed, SSD/E maintains reasonable agreement with the Head-Gordon
545 diffraction data for the structural features of liquid
546 water.\cite{hura00,liu96:new_model} Additionally, the dynamical properties
547 exhibited by SSD/E agree with experiment better than those of more
548 computationally expensive models (like TIP3P and
549 SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
550 of solvent properties makes SSD/E a very attractive model for the
551 simulation of large scale biochemical simulations.
552
553 Recent constant pressure simulations revealed issues in the original
554 SSD model that led to lower than expected densities at all target
555 pressures.\cite{Ichiye03,fennell04} The default model in {\sc oopse}
556 is therefore SSD/E, a density corrected derivative of SSD that
557 exhibits improved liquid structure and transport behavior. If the use
558 of a reaction field long-range interaction correction is desired, it
559 is recommended that the parameters be modified to those of the SSD/RF
560 model (an SSD variant parameterized for reaction field). Solvent parameters can be easily modified in an accompanying
561 \texttt{.bass} file as illustrated in the scheme below. A table of the
562 parameter values and the drawbacks and benefits of the different
563 density corrected SSD models can be found in
564 reference~\cite{fennell04}.
565
566 \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]A portion of a \texttt{.bass} file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
567
568 #include "water.mdl"
569
570 nComponents = 1;
571 component{
572 type = "SSD_water";
573 nMol = 864;
574 }
575
576 initialConfig = "liquidWater.init";
577
578 forceField = "DUFF";
579
580 /*
581 * The following two flags set the cutoff
582 * radius for the electrostatic forces
583 * as well as the skin thickness of the switching
584 * function.
585 */
586
587 electrostaticCutoffRadius = 9.2;
588 electrostaticSkinThickness = 1.38;
589
590 \end{lstlisting}
591
592
593 \subsection{\label{oopseSec:eam}Embedded Atom Method}
594
595 There are Molecular Dynamics packages which have the
596 capacity to simulate metallic systems, including some that have
597 parallel computational abilities\cite{plimpton93}. Potentials that
598 describe bonding transition metal
599 systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have an
600 attractive interaction which models ``Embedding''
601 a positively charged metal ion in the electron density due to the
602 free valance ``sea'' of electrons created by the surrounding atoms in
603 the system. A mostly-repulsive pairwise part of the potential
604 describes the interaction of the positively charged metal core ions
605 with one another. A particular potential description called the
606 Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
607 particularly wide adoption has been selected for inclusion in {\sc oopse}. A
608 good review of {\sc eam} and other metallic potential formulations was written
609 by Voter.\cite{voter}
610
611 The {\sc eam} potential has the form:
612 \begin{eqnarray}
613 V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
614 \phi_{ij}({\bf r}_{ij}), \\
615 \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij}),
616 \end{eqnarray}
617 where $F_{i} $ is the embedding function that equates the energy
618 required to embed a positively-charged core ion $i$ into a linear
619 superposition of spherically averaged atomic electron densities given
620 by $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise
621 interaction between atoms $i$ and $j$. In the original formulation of
622 {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term,
623 however in later refinements to {\sc eam} have shown that non-uniqueness
624 between $F$ and $\phi$ allow for more general forms for
625 $\phi$.\cite{Daw89} There is a cutoff distance, $r_{cut}$, which
626 limits the summations in the {\sc eam} equation to the few dozen atoms
627 surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
628 interactions. Foiles \emph{et al}.~fit {\sc eam} potentials for the fcc
629 metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86}
630 These fits are included in {\sc oopse}.
631
632 \subsection{\label{oopseSec:pbc}Periodic Boundary Conditions}
633
634 \newcommand{\roundme}{\operatorname{round}}
635
636 \textit{Periodic boundary conditions} are widely used to simulate bulk properties with a relatively small number of particles. The
637 simulation box is replicated throughout space to form an infinite
638 lattice. During the simulation, when a particle moves in the primary
639 cell, its image in other cells move in exactly the same direction with
640 exactly the same orientation. Thus, as a particle leaves the primary
641 cell, one of its images will enter through the opposite face. If the
642 simulation box is large enough to avoid ``feeling'' the symmetries of
643 the periodic lattice, surface effects can be ignored. The available
644 periodic cells in OOPSE are cubic, orthorhombic and parallelepiped. We
645 use a $3 \times 3$ matrix, $\mathsf{H}$, to describe the shape and
646 size of the simulation box. $\mathsf{H}$ is defined:
647 \begin{equation}
648 \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z ),
649 \end{equation}
650 where $\mathbf{h}_{\alpha}$ is the column vector of the $\alpha$ axis of the
651 box. During the course of the simulation both the size and shape of
652 the box can be changed to allow volume fluctuations when constraining
653 the pressure.
654
655 A real space vector, $\mathbf{r}$ can be transformed in to a box space
656 vector, $\mathbf{s}$, and back through the following transformations:
657 \begin{align}
658 \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r}, \\
659 \mathbf{r} &= \mathsf{H} \mathbf{s}.
660 \end{align}
661 The vector $\mathbf{s}$ is now a vector expressed as the number of box
662 lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
663 directions. To find the minimum image of a vector $\mathbf{r}$, we
664 first convert it to its corresponding vector in box space, and then,
665 cast each element to lie in the range $[-0.5,0.5]$:
666 \begin{equation}
667 s_{i}^{\prime}=s_{i}-\roundme(s_{i}),
668 \end{equation}
669 where $s_i$ is the $i$th element of $\mathbf{s}$, and
670 $\roundme(s_i)$ is given by
671 \begin{equation}
672 \roundme(x) =
673 \begin{cases}
674 \lfloor x+0.5 \rfloor & \text{if $x \ge 0$,} \\
675 \lceil x-0.5 \rceil & \text{if $x < 0$.}
676 \end{cases}
677 \end{equation}
678 Here $\lfloor x \rfloor$ is the floor operator, and gives the largest
679 integer value that is not greater than $x$, and $\lceil x \rceil$ is
680 the ceiling operator, and gives the smallest integer that is not less
681 than $x$. For example, $\roundme(3.6)=4$, $\roundme(3.1)=3$,
682 $\roundme(-3.6)=-4$, $\roundme(-3.1)=-3$.
683
684 Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
685 transforming back to real space,
686 \begin{equation}
687 \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}.%
688 \end{equation}
689 In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
690 but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
691 the inter-atomic forces.
692
693
694 \section{\label{oopseSec:IOfiles}Input and Output Files}
695
696 \subsection{{\sc bass} and Model Files}
697
698 Every {\sc oopse} simulation begins with a Bizarre Atom Simulation
699 Syntax ({\sc bass}) file. {\sc bass} is a script syntax that is parsed
700 by {\sc oopse} at runtime. The {\sc bass} file allows for the user to
701 completely describe the system they wish to simulate, as well as tailor
702 {\sc oopse}'s behavior during the simulation. {\sc bass} files are
703 denoted with the extension
704 \texttt{.bass}, an example file is shown in
705 Scheme~\ref{sch:bassExample}.
706
707 \begin{lstlisting}[float,caption={[An example of a complete {\sc bass} file] An example showing a complete {\sc bass} file.},label={sch:bassExample}]
708
709 molecule{
710 name = "Ar";
711 nAtoms = 1;
712 atom[0]{
713 type="Ar";
714 position( 0.0, 0.0, 0.0 );
715 }
716 }
717
718 nComponents = 1;
719 component{
720 type = "Ar";
721 nMol = 108;
722 }
723
724 initialConfig = "./argon.init";
725
726 forceField = "LJ";
727 ensemble = "NVE"; // specify the simulation ensemble
728 dt = 1.0; // the time step for integration
729 runTime = 1e3; // the total simulation run time
730 sampleTime = 100; // trajectory file frequency
731 statusTime = 50; // statistics file frequency
732
733 \end{lstlisting}
734
735 Within the \texttt{.bass} file it is necessary to provide a complete
736 description of the molecule before it is actually placed in the
737 simulation. The {\sc bass} syntax was originally developed with this
738 goal in mind, and allows for the specification of all the atoms in a
739 molecular prototype, as well as any bonds, bends, or torsions. These
740 descriptions can become lengthy for complex molecules, and it would be
741 inconvenient to duplicate the simulation at the beginning of each {\sc
742 bass} script. Addressing this issue {\sc bass} allows for the
743 inclusion of model files at the top of a \texttt{.bass} file. These
744 model files, denoted with the \texttt{.mdl} extension, allow the user
745 to describe a molecular prototype once, then simply include it into
746 each simulation containing that molecule. Returning to the example in
747 Scheme~\ref{sch:bassExample}, the \texttt{.mdl} file's contents would
748 be Scheme~\ref{sch:mdlExample}, and the new \texttt{.bass} file would
749 become Scheme~\ref{sch:bassExPrime}.
750
751 \begin{lstlisting}[float,caption={An example \texttt{.mdl} file.},label={sch:mdlExample}]
752
753 molecule{
754 name = "Ar";
755 nAtoms = 1;
756 atom[0]{
757 type="Ar";
758 position( 0.0, 0.0, 0.0 );
759 }
760 }
761
762 \end{lstlisting}
763
764 \begin{lstlisting}[float,caption={Revised {\sc bass} example.},label={sch:bassExPrime}]
765
766 #include "argon.mdl"
767
768 nComponents = 1;
769 component{
770 type = "Ar";
771 nMol = 108;
772 }
773
774 initialConfig = "./argon.init";
775
776 forceField = "LJ";
777 ensemble = "NVE";
778 dt = 1.0;
779 runTime = 1e3;
780 sampleTime = 100;
781 statusTime = 50;
782
783 \end{lstlisting}
784
785 \subsection{\label{oopseSec:coordFiles}Coordinate Files}
786
787 The standard format for storage of a systems coordinates is a modified
788 xyz-file syntax, the exact details of which can be seen in
789 Scheme~\ref{sch:dumpFormat}. As all bonding and molecular information
790 is stored in the \texttt{.bass} and \texttt{.mdl} files, the
791 coordinate files are simply the complete set of coordinates for each
792 atom at a given simulation time. One important note, although the
793 simulation propagates the complete rotation matrix, directional
794 entities are written out using quanternions, to save space in the
795 output files.
796
797 \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
798
799 nAtoms
800 time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
801 Name1 x y z vx vy vz q0 q1 q2 q3 jx jy jz
802 Name2 x y z vx vy vz q0 q1 q2 q3 jx jy jz
803 etc...
804
805 \end{lstlisting}
806
807
808 There are three major files used by {\sc oopse} written in the
809 coordinate format, they are as follows: the initialization file
810 (\texttt{.init}), the simulation trajectory file (\texttt{.dump}), and
811 the final coordinates of the simulation. The initialization file is
812 necessary for {\sc oopse} to start the simulation with the proper
813 coordinates, and is generated before the simulation run. The
814 trajectory file is created at the beginning of the simulation, and is
815 used to store snapshots of the simulation at regular intervals. The
816 first frame is a duplication of the
817 \texttt{.init} file, and each subsequent frame is appended to the file
818 at an interval specified in the \texttt{.bass} file with the
819 \texttt{sampleTime} flag. The final coordinate file is the end of run file. The
820 \texttt{.eor} file stores the final configuration of the system for a
821 given simulation. The file is updated at the same time as the
822 \texttt{.dump} file, however, it only contains the most recent
823 frame. In this way, an \texttt{.eor} file may be used as the
824 initialization file to a second simulation in order to continue a
825 simulation or recover one from a processor that has crashed during the
826 course of the run.
827
828 \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
829
830 As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization
831 file is needed to provide the starting coordinates for a
832 simulation. The {\sc oopse} package provides several system building
833 programs to aid in the creation of the \texttt{.init}
834 file. The programs use {\sc bass}, and will recognize
835 arguments and parameters in the \texttt{.bass} file that would
836 otherwise be ignored by the simulation.
837
838 \subsection{The Statistics File}
839
840 The last output file generated by {\sc oopse} is the statistics
841 file. This file records such statistical quantities as the
842 instantaneous temperature, volume, pressure, etc. It is written out
843 with the frequency specified in the \texttt{.bass} file with the
844 \texttt{statusTime} keyword. The file allows the user to observe the
845 system variables as a function of simulation time while the simulation
846 is in progress. One useful function the statistics file serves is to
847 monitor the conserved quantity of a given simulation ensemble, this
848 allows the user to observe the stability of the integrator. The
849 statistics file is denoted with the \texttt{.stat} file extension.
850
851 \section{\label{oopseSec:mechanics}Mechanics}
852
853 \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the
854 DLM method}
855
856 The default method for integrating the equations of motion in {\sc
857 oopse} is a velocity-Verlet version of the symplectic splitting method
858 proposed by Dullweber, Leimkuhler and McLachlan
859 (DLM).\cite{Dullweber1997} When there are no directional atoms or
860 rigid bodies present in the simulation, this integrator becomes the
861 standard velocity-Verlet integrator which is known to sample the
862 microcanonical (NVE) ensemble.\cite{Frenkel1996}
863
864 Previous integration methods for orientational motion have problems
865 that are avoided in the DLM method. Direct propagation of the Euler
866 angles has a known $1/\sin\theta$ divergence in the equations of
867 motion for $\phi$ and $\psi$,\cite{allen87:csl} leading to
868 numerical instabilities any time one of the directional atoms or rigid
869 bodies has an orientation near $\theta=0$ or $\theta=\pi$. More
870 modern quaternion-based integration methods have relatively poor
871 energy conservation. While quaternions work well for orientational
872 motion in other ensembles, the microcanonical ensemble has a
873 constant energy requirement that is quite sensitive to errors in the
874 equations of motion. An earlier implementation of {\sc oopse}
875 utilized quaternions for propagation of rotational motion; however, a
876 detailed investigation showed that they resulted in a steady drift in
877 the total energy, something that has been observed by
878 Laird {\it et al.}\cite{Laird97}
879
880 The key difference in the integration method proposed by Dullweber
881 \emph{et al.} is that the entire $3 \times 3$ rotation matrix is
882 propagated from one time step to the next. In the past, this would not
883 have been feasible, since the rotation matrix for a single body has
884 nine elements compared with the more memory-efficient methods (using
885 three Euler angles or 4 quaternions). Computer memory has become much
886 less costly in recent years, and this can be translated into
887 substantial benefits in energy conservation.
888
889 The basic equations of motion being integrated are derived from the
890 Hamiltonian for conservative systems containing rigid bodies,
891 \begin{equation}
892 H = \sum_{i} \left( \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
893 \frac{1}{2} {\bf j}_i^T \cdot \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot
894 {\bf j}_i \right) +
895 V\left(\left\{{\bf r}\right\}, \left\{\mathsf{A}\right\}\right),
896 \end{equation}
897 where ${\bf r}_i$ and ${\bf v}_i$ are the cartesian position vector
898 and velocity of the center of mass of particle $i$, and ${\bf j}_i$,
899 $\overleftrightarrow{\mathsf{I}}_i$ are the body-fixed angular
900 momentum and moment of inertia tensor respectively, and the
901 superscript $T$ denotes the transpose of the vector. $\mathsf{A}_i$
902 is the $3 \times 3$ rotation matrix describing the instantaneous
903 orientation of the particle. $V$ is the potential energy function
904 which may depend on both the positions $\left\{{\bf r}\right\}$ and
905 orientations $\left\{\mathsf{A}\right\}$ of all particles. The
906 equations of motion for the particle centers of mass are derived from
907 Hamilton's equations and are quite simple,
908 \begin{eqnarray}
909 \dot{{\bf r}} & = & {\bf v}, \\
910 \dot{{\bf v}} & = & \frac{{\bf f}}{m},
911 \end{eqnarray}
912 where ${\bf f}$ is the instantaneous force on the center of mass
913 of the particle,
914 \begin{equation}
915 {\bf f} = - \frac{\partial}{\partial
916 {\bf r}} V(\left\{{\bf r}(t)\right\}, \left\{\mathsf{A}(t)\right\}).
917 \end{equation}
918
919 The equations of motion for the orientational degrees of freedom are
920 \begin{eqnarray}
921 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
922 \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right),\\
923 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
924 \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
925 V}{\partial \mathsf{A}} \right).
926 \end{eqnarray}
927 In these equations of motion, the $\mbox{skew}$ matrix of a vector
928 ${\bf v} = \left( v_1, v_2, v_3 \right)$ is defined:
929 \begin{equation}
930 \mbox{skew}\left( {\bf v} \right) := \left(
931 \begin{array}{ccc}
932 0 & v_3 & - v_2 \\
933 -v_3 & 0 & v_1 \\
934 v_2 & -v_1 & 0
935 \end{array}
936 \right).
937 \end{equation}
938 The $\mbox{rot}$ notation refers to the mapping of the $3 \times 3$
939 rotation matrix to a vector of orientations by first computing the
940 skew-symmetric part $\left(\mathsf{A} - \mathsf{A}^{T}\right)$ and
941 then associating this with a length 3 vector by inverting the
942 $\mbox{skew}$ function above:
943 \begin{equation}
944 \mbox{rot}\left(\mathsf{A}\right) := \mbox{ skew}^{-1}\left(\mathsf{A}
945 - \mathsf{A}^{T} \right).
946 \end{equation}
947 Written this way, the $\mbox{rot}$ operation creates a set of
948 conjugate angle coordinates to the body-fixed angular momenta
949 represented by ${\bf j}$. This equation of motion for angular momenta
950 is equivalent to the more familiar body-fixed forms,
951 \begin{eqnarray}
952 \dot{j_{x}} & = & \tau^b_x(t) +
953 \left(\overleftrightarrow{\mathsf{I}}_{yy} - \overleftrightarrow{\mathsf{I}}_{zz} \right) j_y j_z, \\
954 \dot{j_{y}} & = & \tau^b_y(t) +
955 \left(\overleftrightarrow{\mathsf{I}}_{zz} - \overleftrightarrow{\mathsf{I}}_{xx} \right) j_z j_x,\\
956 \dot{j_{z}} & = & \tau^b_z(t) +
957 \left(\overleftrightarrow{\mathsf{I}}_{xx} - \overleftrightarrow{\mathsf{I}}_{yy} \right) j_x j_y,
958 \end{eqnarray}
959 which utilize the body-fixed torques, ${\bf \tau}^b$. Torques are
960 most easily derived in the space-fixed frame,
961 \begin{equation}
962 {\bf \tau}^b(t) = \mathsf{A}(t) \cdot {\bf \tau}^s(t),
963 \end{equation}
964 where the torques are either derived from the forces on the
965 constituent atoms of the rigid body, or for directional atoms,
966 directly from derivatives of the potential energy,
967 \begin{equation}
968 {\bf \tau}^s(t) = - \hat{\bf u}(t) \times \left( \frac{\partial}
969 {\partial \hat{\bf u}} V\left(\left\{ {\bf r}(t) \right\}, \left\{
970 \mathsf{A}(t) \right\}\right) \right).
971 \end{equation}
972 Here $\hat{\bf u}$ is a unit vector pointing along the principal axis
973 of the particle in the space-fixed frame.
974
975 The DLM method uses a Trotter factorization of the orientational
976 propagator. This has three effects:
977 \begin{enumerate}
978 \item the integrator is area-preserving in phase space (i.e. it is
979 {\it symplectic}),
980 \item the integrator is time-{\it reversible}, making it suitable for Hybrid
981 Monte Carlo applications, and
982 \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
983 for timesteps of length $h$.
984 \end{enumerate}
985
986 The integration of the equations of motion is carried out in a
987 velocity-Verlet style 2-part algorithm, where $h= \delta t$:
988
989 {\tt moveA:}
990 \begin{align*}
991 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
992 + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
993 %
994 {\bf r}(t + h) &\leftarrow {\bf r}(t)
995 + h {\bf v}\left(t + h / 2 \right), \\
996 %
997 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
998 + \frac{h}{2} {\bf \tau}^b(t), \\
999 %
1000 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
1001 (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
1002 \end{align*}
1003
1004 In this context, the $\mathrm{rotate}$ function is the reversible product
1005 of the three body-fixed rotations,
1006 \begin{equation}
1007 \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
1008 \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y /
1009 2) \cdot \mathsf{G}_x(a_x /2),
1010 \end{equation}
1011 where each rotational propagator, $\mathsf{G}_\alpha(\theta)$, rotates
1012 both the rotation matrix ($\mathsf{A}$) and the body-fixed angular
1013 momentum (${\bf j}$) by an angle $\theta$ around body-fixed axis
1014 $\alpha$,
1015 \begin{equation}
1016 \mathsf{G}_\alpha( \theta ) = \left\{
1017 \begin{array}{lcl}
1018 \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
1019 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf j}(0).
1020 \end{array}
1021 \right.
1022 \end{equation}
1023 $\mathsf{R}_\alpha$ is a quadratic approximation to
1024 the single-axis rotation matrix. For example, in the small-angle
1025 limit, the rotation matrix around the body-fixed x-axis can be
1026 approximated as
1027 \begin{equation}
1028 \mathsf{R}_x(\theta) \approx \left(
1029 \begin{array}{ccc}
1030 1 & 0 & 0 \\
1031 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
1032 \theta^2 / 4} \\
1033 0 & \frac{\theta}{1+
1034 \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}
1035 \end{array}
1036 \right).
1037 \end{equation}
1038 All other rotations follow in a straightforward manner.
1039
1040 After the first part of the propagation, the forces and body-fixed
1041 torques are calculated at the new positions and orientations
1042
1043 {\tt doForces:}
1044 \begin{align*}
1045 {\bf f}(t + h) &\leftarrow
1046 - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
1047 %
1048 {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
1049 \times \frac{\partial V}{\partial {\bf u}}, \\
1050 %
1051 {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
1052 \cdot {\bf \tau}^s(t + h).
1053 \end{align*}
1054
1055 {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
1056 $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
1057 torques have been obtained at the new time step, the velocities can be
1058 advanced to the same time value.
1059
1060 {\tt moveB:}
1061 \begin{align*}
1062 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2 \right)
1063 + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
1064 %
1065 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2 \right)
1066 + \frac{h}{2} {\bf \tau}^b(t + h) .
1067 \end{align*}
1068
1069 The matrix rotations used in the DLM method end up being more costly
1070 computationally than the simpler arithmetic quaternion
1071 propagation. With the same time step, a 1000-molecule water simulation
1072 shows an average 7\% increase in computation time using the DLM method
1073 in place of quaternions. This cost is more than justified when
1074 comparing the energy conservation of the two methods as illustrated in
1075 Fig.~\ref{timestep}.
1076
1077 \begin{figure}
1078 \centering
1079 \includegraphics[width=\linewidth]{timeStep.pdf}
1080 \caption[Energy conservation for quaternion versus DLM dynamics]{Energy conservation using quaternion based integration versus
1081 the method proposed by Dullweber \emph{et al.} with increasing time
1082 step. For each time step, the dotted line is total energy using the
1083 DLM integrator, and the solid line comes from the quaternion
1084 integrator. The larger time step plots are shifted up from the true
1085 energy baseline for clarity.}
1086 \label{timestep}
1087 \end{figure}
1088
1089 In Fig.~\ref{timestep}, the resulting energy drift at various time
1090 steps for both the DLM and quaternion integration schemes is
1091 compared. All of the 1000 molecule water simulations started with the
1092 same configuration, and the only difference was the method for
1093 handling rotational motion. At time steps of 0.1 and 0.5 fs, both
1094 methods for propagating molecule rotation conserve energy fairly well,
1095 with the quaternion method showing a slight energy drift over time in
1096 the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
1097 energy conservation benefits of the DLM method are clearly
1098 demonstrated. Thus, while maintaining the same degree of energy
1099 conservation, one can take considerably longer time steps, leading to
1100 an overall reduction in computation time.
1101
1102 There is only one specific keyword relevant to the default integrator,
1103 and that is the time step for integrating the equations of motion.
1104
1105 \begin{center}
1106 \begin{tabular}{llll}
1107 {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1108 default value} \\
1109 $h$ & {\tt dt = 2.0;} & fs & none
1110 \end{tabular}
1111 \end{center}
1112
1113 \subsection{\label{sec:extended}Extended Systems for other Ensembles}
1114
1115 {\sc oopse} implements a number of extended system integrators for
1116 sampling from other ensembles relevant to chemical physics. The
1117 integrator can selected with the {\tt ensemble} keyword in the
1118 {\tt .bass} file:
1119
1120 \begin{center}
1121 \begin{tabular}{lll}
1122 {\bf Integrator} & {\bf Ensemble} & {\bf {\tt .bass} line} \\
1123 NVE & microcanonical & {\tt ensemble = NVE; } \\
1124 NVT & canonical & {\tt ensemble = NVT; } \\
1125 NPTi & isobaric-isothermal & {\tt ensemble = NPTi;} \\
1126 & (with isotropic volume changes) & \\
1127 NPTf & isobaric-isothermal & {\tt ensemble = NPTf;} \\
1128 & (with changes to box shape) & \\
1129 NPTxyz & approximate isobaric-isothermal & {\tt ensemble = NPTxyz;} \\
1130 & (with separate barostats on each box dimension) & \\
1131 \end{tabular}
1132 \end{center}
1133
1134 The relatively well-known Nos\'e-Hoover thermostat\cite{Hoover85} is
1135 implemented in {\sc oopse}'s NVT integrator. This method couples an
1136 extra degree of freedom (the thermostat) to the kinetic energy of the
1137 system, and has been shown to sample the canonical distribution in the
1138 system degrees of freedom while conserving a quantity that is, to
1139 within a constant, the Helmholtz free energy.\cite{melchionna93}
1140
1141 NPT algorithms attempt to maintain constant pressure in the system by
1142 coupling the volume of the system to a barostat. {\sc oopse} contains
1143 three different constant pressure algorithms. The first two, NPTi and
1144 NPTf have been shown to conserve a quantity that is, to within a
1145 constant, the Gibbs free energy.\cite{melchionna93} The Melchionna
1146 modification to the Hoover barostat is implemented in both NPTi and
1147 NPTf. NPTi allows only isotropic changes in the simulation box, while
1148 box {\it shape} variations are allowed in NPTf. The NPTxyz integrator
1149 has {\it not} been shown to sample from the isobaric-isothermal
1150 ensemble. It is useful, however, in that it maintains orthogonality
1151 for the axes of the simulation box while attempting to equalize
1152 pressure along the three perpendicular directions in the box.
1153
1154 Each of the extended system integrators requires additional keywords
1155 to set target values for the thermodynamic state variables that are
1156 being held constant. Keywords are also required to set the
1157 characteristic decay times for the dynamics of the extended
1158 variables.
1159
1160 \begin{center}
1161 \begin{tabular}{llll}
1162 {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1163 default value} \\
1164 $T_{\mathrm{target}}$ & {\tt targetTemperature = 300;} & K & none \\
1165 $P_{\mathrm{target}}$ & {\tt targetPressure = 1;} & atm & none \\
1166 $\tau_T$ & {\tt tauThermostat = 1e3;} & fs & none \\
1167 $\tau_B$ & {\tt tauBarostat = 5e3;} & fs & none \\
1168 & {\tt resetTime = 200;} & fs & none \\
1169 & {\tt useInitialExtendedSystemState = true;} & logical &
1170 true
1171 \end{tabular}
1172 \end{center}
1173
1174 Two additional keywords can be used to either clear the extended
1175 system variables periodically ({\tt resetTime}), or to maintain the
1176 state of the extended system variables between simulations ({\tt
1177 useInitialExtendedSystemState}). More details on these variables
1178 and their use in the integrators follows below.
1179
1180 \subsection{\label{oopseSec:noseHooverThermo}Nos\'{e}-Hoover Thermostatting}
1181
1182 The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
1183 \begin{eqnarray}
1184 \dot{{\bf r}} & = & {\bf v}, \\
1185 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
1186 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1187 \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
1188 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
1189 \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1190 V}{\partial \mathsf{A}} \right) - \chi {\bf j}.
1191 \label{eq:nosehoovereom}
1192 \end{eqnarray}
1193
1194 $\chi$ is an ``extra'' variable included in the extended system, and
1195 it is propagated using the first order equation of motion
1196 \begin{equation}
1197 \dot{\chi} = \frac{1}{\tau_{T}^2} \left( \frac{T}{T_{\mathrm{target}}} - 1 \right).
1198 \label{eq:nosehooverext}
1199 \end{equation}
1200
1201 The instantaneous temperature $T$ is proportional to the total kinetic
1202 energy (both translational and orientational) and is given by
1203 \begin{equation}
1204 T = \frac{2 K}{f k_B}
1205 \end{equation}
1206 Here, $f$ is the total number of degrees of freedom in the system,
1207 \begin{equation}
1208 f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
1209 \end{equation}
1210 and $K$ is the total kinetic energy,
1211 \begin{equation}
1212 K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
1213 \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
1214 \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
1215 \end{equation}
1216
1217 In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
1218 relaxation of the temperature to the target value. To set values for
1219 $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use the
1220 {\tt tauThermostat} and {\tt targetTemperature} keywords in the {\tt
1221 .bass} file. The units for {\tt tauThermostat} are fs, and the units
1222 for the {\tt targetTemperature} are degrees K. The integration of
1223 the equations of motion is carried out in a velocity-Verlet style 2
1224 part algorithm:
1225
1226 {\tt moveA:}
1227 \begin{align*}
1228 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1229 %
1230 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1231 + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1232 \chi(t)\right), \\
1233 %
1234 {\bf r}(t + h) &\leftarrow {\bf r}(t)
1235 + h {\bf v}\left(t + h / 2 \right) ,\\
1236 %
1237 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1238 + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1239 \chi(t) \right) ,\\
1240 %
1241 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
1242 \left(h * {\bf j}(t + h / 2)
1243 \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
1244 %
1245 \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
1246 + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
1247 {T_{\mathrm{target}}} - 1 \right) .
1248 \end{align*}
1249
1250 Here $\mathrm{rotate}(h * {\bf j}
1251 \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Trotter
1252 factorization of the three rotation operations that was discussed in
1253 the section on the DLM integrator. Note that this operation modifies
1254 both the rotation matrix $\mathsf{A}$ and the angular momentum ${\bf
1255 j}$. {\tt moveA} propagates velocities by a half time step, and
1256 positional degrees of freedom by a full time step. The new positions
1257 (and orientations) are then used to calculate a new set of forces and
1258 torques in exactly the same way they are calculated in the {\tt
1259 doForces} portion of the DLM integrator.
1260
1261 Once the forces and torques have been obtained at the new time step,
1262 the temperature, velocities, and the extended system variable can be
1263 advanced to the same time value.
1264
1265 {\tt moveB:}
1266 \begin{align*}
1267 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1268 \left\{{\bf j}(t + h)\right\}, \\
1269 %
1270 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1271 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1272 {T_{\mathrm{target}}} - 1 \right), \\
1273 %
1274 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
1275 + h / 2 \right) + \frac{h}{2} \left(
1276 \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1277 \chi(t h)\right) ,\\
1278 %
1279 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1280 + h / 2 \right) + \frac{h}{2}
1281 \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
1282 \chi(t + h) \right) .
1283 \end{align*}
1284
1285 Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to caclculate
1286 $T(t + h)$ as well as $\chi(t + h)$, they indirectly depend on their
1287 own values at time $t + h$. {\tt moveB} is therefore done in an
1288 iterative fashion until $\chi(t + h)$ becomes self-consistent. The
1289 relative tolerance for the self-consistency check defaults to a value
1290 of $\mbox{10}^{-6}$, but {\sc oopse} will terminate the iteration
1291 after 4 loops even if the consistency check has not been satisfied.
1292
1293 The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for the
1294 extended system that is, to within a constant, identical to the
1295 Helmholtz free energy,\cite{melchionna93}
1296 \begin{equation}
1297 H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
1298 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1299 \right).
1300 \end{equation}
1301 Poor choices of $h$ or $\tau_T$ can result in non-conservation
1302 of $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
1303 last column of the {\tt .stat} file to allow checks on the quality of
1304 the integration.
1305
1306 Bond constraints are applied at the end of both the {\tt moveA} and
1307 {\tt moveB} portions of the algorithm. Details on the constraint
1308 algorithms are given in section \ref{oopseSec:rattle}.
1309
1310 \subsection{\label{sec:NPTi}Constant-pressure integration with
1311 isotropic box deformations (NPTi)}
1312
1313 To carry out isobaric-isothermal ensemble calculations {\sc oopse}
1314 implements the Melchionna modifications to the Nos\'e-Hoover-Andersen
1315 equations of motion,\cite{melchionna93}
1316
1317 \begin{eqnarray}
1318 \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
1319 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
1320 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1321 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
1322 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1323 \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1324 V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
1325 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1326 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1327 \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V \left( P -
1328 P_{\mathrm{target}} \right), \\
1329 \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta .
1330 \label{eq:melchionna1}
1331 \end{eqnarray}
1332
1333 $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the extended
1334 system. $\chi$ is a thermostat, and it has the same function as it
1335 does in the Nos\'e-Hoover NVT integrator. $\eta$ is a barostat which
1336 controls changes to the volume of the simulation box. ${\bf R}_0$ is
1337 the location of the center of mass for the entire system, and
1338 $\mathcal{V}$ is the volume of the simulation box. At any time, the
1339 volume can be calculated from the determinant of the matrix which
1340 describes the box shape:
1341 \begin{equation}
1342 \mathcal{V} = \det(\mathsf{H}).
1343 \end{equation}
1344
1345 The NPTi integrator requires an instantaneous pressure. This quantity
1346 is calculated via the pressure tensor,
1347 \begin{equation}
1348 \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
1349 \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
1350 \overleftrightarrow{\mathsf{W}}(t).
1351 \end{equation}
1352 The kinetic contribution to the pressure tensor utilizes the {\it
1353 outer} product of the velocities denoted by the $\otimes$ symbol. The
1354 stress tensor is calculated from another outer product of the
1355 inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
1356 r}_i$) with the forces between the same two atoms,
1357 \begin{equation}
1358 \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf r}_{ij}(t)
1359 \otimes {\bf f}_{ij}(t).
1360 \end{equation}
1361 The instantaneous pressure is then simply obtained from the trace of
1362 the Pressure tensor,
1363 \begin{equation}
1364 P(t) = \frac{1}{3} \mathrm{Tr} \left( \overleftrightarrow{\mathsf{P}}(t).
1365 \right)
1366 \end{equation}
1367
1368 In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
1369 relaxation of the pressure to the target value. To set values for
1370 $\tau_B$ or $P_{\mathrm{target}}$ in a simulation, one would use the
1371 {\tt tauBarostat} and {\tt targetPressure} keywords in the {\tt .bass}
1372 file. The units for {\tt tauBarostat} are fs, and the units for the
1373 {\tt targetPressure} are atmospheres. Like in the NVT integrator, the
1374 integration of the equations of motion is carried out in a
1375 velocity-Verlet style 2 part algorithm:
1376
1377 {\tt moveA:}
1378 \begin{align*}
1379 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1380 %
1381 P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
1382 %
1383 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1384 + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1385 \left(\chi(t) + \eta(t) \right) \right), \\
1386 %
1387 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1388 + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1389 \chi(t) \right), \\
1390 %
1391 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1392 {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1393 \right) ,\\
1394 %
1395 \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1396 \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1397 \right) ,\\
1398 %
1399 \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
1400 \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
1401 - P_{\mathrm{target}} \right), \\
1402 %
1403 {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
1404 \left\{ {\bf v}\left(t + h / 2 \right)
1405 + \eta(t + h / 2)\left[ {\bf r}(t + h)
1406 - {\bf R}_0 \right] \right\} ,\\
1407 %
1408 \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
1409 \mathsf{H}(t).
1410 \end{align*}
1411
1412 Most of these equations are identical to their counterparts in the NVT
1413 integrator, but the propagation of positions to time $t + h$
1414 depends on the positions at the same time. {\sc oopse} carries out
1415 this step iteratively (with a limit of 5 passes through the iterative
1416 loop). Also, the simulation box $\mathsf{H}$ is scaled uniformly for
1417 one full time step by an exponential factor that depends on the value
1418 of $\eta$ at time $t +
1419 h / 2$. Reshaping the box uniformly also scales the volume of
1420 the box by
1421 \begin{equation}
1422 \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
1423 \mathcal{V}(t)
1424 \end{equation}
1425
1426 The {\tt doForces} step for the NPTi integrator is exactly the same as
1427 in both the DLM and NVT integrators. Once the forces and torques have
1428 been obtained at the new time step, the velocities can be advanced to
1429 the same time value.
1430
1431 {\tt moveB:}
1432 \begin{align*}
1433 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1434 \left\{{\bf j}(t + h)\right\} ,\\
1435 %
1436 P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
1437 \left\{{\bf v}(t + h)\right\}, \\
1438 %
1439 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1440 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1441 {T_{\mathrm{target}}} - 1 \right), \\
1442 %
1443 \eta(t + h) &\leftarrow \eta(t + h / 2) +
1444 \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1445 \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
1446 %
1447 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
1448 + h / 2 \right) + \frac{h}{2} \left(
1449 \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1450 (\chi(t + h) + \eta(t + h)) \right) ,\\
1451 %
1452 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1453 + h / 2 \right) + \frac{h}{2} \left( {\bf
1454 \tau}^b(t + h) - {\bf j}(t + h)
1455 \chi(t + h) \right) .
1456 \end{align*}
1457
1458 Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
1459 to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
1460 h)$, they indirectly depend on their own values at time $t + h$. {\tt
1461 moveB} is therefore done in an iterative fashion until $\chi(t + h)$
1462 and $\eta(t + h)$ become self-consistent. The relative tolerance for
1463 the self-consistency check defaults to a value of $\mbox{10}^{-6}$,
1464 but {\sc oopse} will terminate the iteration after 4 loops even if the
1465 consistency check has not been satisfied.
1466
1467 The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm is
1468 known to conserve a Hamiltonian for the extended system that is, to
1469 within a constant, identical to the Gibbs free energy,
1470 \begin{equation}
1471 H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
1472 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1473 \right) + P_{\mathrm{target}} \mathcal{V}(t).
1474 \end{equation}
1475 Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
1476 non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity is
1477 maintained in the last column of the {\tt .stat} file to allow checks
1478 on the quality of the integration. It is also known that this
1479 algorithm samples the equilibrium distribution for the enthalpy
1480 (including contributions for the thermostat and barostat),
1481 \begin{equation}
1482 H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2} \left(
1483 \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) + P_{\mathrm{target}}
1484 \mathcal{V}(t).
1485 \end{equation}
1486
1487 Bond constraints are applied at the end of both the {\tt moveA} and
1488 {\tt moveB} portions of the algorithm. Details on the constraint
1489 algorithms are given in section \ref{oopseSec:rattle}.
1490
1491 \subsection{\label{sec:NPTf}Constant-pressure integration with a
1492 flexible box (NPTf)}
1493
1494 There is a relatively simple generalization of the
1495 Nos\'e-Hoover-Andersen method to include changes in the simulation box
1496 {\it shape} as well as in the volume of the box. This method utilizes
1497 the full $3 \times 3$ pressure tensor and introduces a tensor of
1498 extended variables ($\overleftrightarrow{\eta}$) to control changes to
1499 the box shape. The equations of motion for this method are
1500 \begin{eqnarray}
1501 \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
1502 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
1503 \chi \cdot \mathsf{1}) {\bf v}, \\
1504 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1505 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
1506 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1507 \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1508 V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
1509 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1510 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1511 \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
1512 T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1513 \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
1514 \label{eq:melchionna2}
1515 \end{eqnarray}
1516
1517 Here, $\mathsf{1}$ is the unit matrix and $\overleftrightarrow{\mathsf{P}}$
1518 is the pressure tensor. Again, the volume, $\mathcal{V} = \det
1519 \mathsf{H}$.
1520
1521 The propagation of the equations of motion is nearly identical to the
1522 NPTi integration:
1523
1524 {\tt moveA:}
1525 \begin{align*}
1526 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1527 %
1528 \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf r}(t)\right\},
1529 \left\{{\bf v}(t)\right\} ,\\
1530 %
1531 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
1532 + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
1533 \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
1534 {\bf v}(t) \right), \\
1535 %
1536 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
1537 + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1538 \chi(t) \right), \\
1539 %
1540 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1541 {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1542 \right), \\
1543 %
1544 \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1545 \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
1546 - 1 \right), \\
1547 %
1548 \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
1549 \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
1550 T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
1551 - P_{\mathrm{target}}\mathsf{1} \right), \\
1552 %
1553 {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
1554 \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
1555 h / 2) \cdot \left[ {\bf r}(t + h)
1556 - {\bf R}_0 \right] \right\}, \\
1557 %
1558 \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
1559 \overleftrightarrow{\eta}(t + h / 2)} .
1560 \end{align*}
1561 {\sc oopse} uses a power series expansion truncated at second order
1562 for the exponential operation which scales the simulation box.
1563
1564 The {\tt moveB} portion of the algorithm is largely unchanged from the
1565 NPTi integrator:
1566
1567 {\tt moveB:}
1568 \begin{align*}
1569 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1570 \left\{{\bf j}(t + h)\right\}, \\
1571 %
1572 \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
1573 (t + h)\right\}, \left\{{\bf v}(t
1574 + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
1575 %
1576 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1577 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
1578 h)}{T_{\mathrm{target}}} - 1 \right), \\
1579 %
1580 \overleftrightarrow{\eta}(t + h) &\leftarrow
1581 \overleftrightarrow{\eta}(t + h / 2) +
1582 \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1583 \tau_B^2} \left( \overleftrightarrow{P}(t + h)
1584 - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1585 %
1586 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
1587 + h / 2 \right) + \frac{h}{2} \left(
1588 \frac{{\bf f}(t + h)}{m} -
1589 (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
1590 + h)) \right) \cdot {\bf v}(t + h), \\
1591 %
1592 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1593 + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
1594 + h) - {\bf j}(t + h) \chi(t + h) \right) .
1595 \end{align*}
1596
1597 The iterative schemes for both {\tt moveA} and {\tt moveB} are
1598 identical to those described for the NPTi integrator.
1599
1600 The NPTf integrator is known to conserve the following Hamiltonian:
1601 \begin{equation}
1602 H_{\mathrm{NPTf}} = V + K + f k_B T_{\mathrm{target}} \left(
1603 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1604 \right) + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
1605 T_{\mathrm{target}}}{2}
1606 \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
1607 \end{equation}
1608
1609 This integrator must be used with care, particularly in liquid
1610 simulations. Liquids have very small restoring forces in the
1611 off-diagonal directions, and the simulation box can very quickly form
1612 elongated and sheared geometries which become smaller than the
1613 electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
1614 finds most use in simulating crystals or liquid crystals which assume
1615 non-orthorhombic geometries.
1616
1617 \subsection{\label{nptxyz}Constant pressure in 3 axes (NPTxyz)}
1618
1619 There is one additional extended system integrator which is somewhat
1620 simpler than the NPTf method described above. In this case, the three
1621 axes have independent barostats which each attempt to preserve the
1622 target pressure along the box walls perpendicular to that particular
1623 axis. The lengths of the box axes are allowed to fluctuate
1624 independently, but the angle between the box axes does not change.
1625 The equations of motion are identical to those described above, but
1626 only the {\it diagonal} elements of $\overleftrightarrow{\eta}$ are
1627 computed. The off-diagonal elements are set to zero (even when the
1628 pressure tensor has non-zero off-diagonal elements).
1629
1630 It should be noted that the NPTxyz integrator is {\it not} known to
1631 preserve any Hamiltonian of interest to the chemical physics
1632 community. The integrator is extremely useful, however, in generating
1633 initial conditions for other integration methods. It {\it is} suitable
1634 for use with liquid simulations, or in cases where there is
1635 orientational anisotropy in the system (i.e. in lipid bilayer
1636 simulations).
1637
1638 \subsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
1639 Constraints}
1640
1641 In order to satisfy the constraints of fixed bond lengths within {\sc
1642 oopse}, we have implemented the {\sc rattle} algorithm of
1643 Andersen.\cite{andersen83} The algorithm is a velocity verlet
1644 formulation of the {\sc shake} method\cite{ryckaert77} of iteratively
1645 solving the Lagrange multipliers of constraint. The system of Lagrange
1646 multipliers allows one to reformulate the equations of motion with
1647 explicit constraint forces.\cite{fowles99:lagrange}
1648
1649 Consider a system described by coordinates $q_1$ and $q_2$ subject to an
1650 equation of constraint:
1651 \begin{equation}
1652 \sigma(q_1, q_2,t) = 0
1653 \label{oopseEq:lm1}
1654 \end{equation}
1655 The Lagrange formulation of the equations of motion can be written:
1656 \begin{equation}
1657 \delta\int_{t_1}^{t_2}L\, dt =
1658 \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
1659 - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
1660 \biggr ) \biggr] \delta q_i \, dt = 0.
1661 \label{oopseEq:lm2}
1662 \end{equation}
1663 Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
1664 are linked by $\sigma$. However, $\sigma$ is fixed at any given
1665 instant of time, giving:
1666 \begin{align}
1667 \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1668 + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 ,\\
1669 %
1670 \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1671 - \frac{\partial\sigma}{\partial q_2} \delta q_2, \\
1672 %
1673 \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1674 \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1.
1675 \end{align}
1676 Substituted back into Eq.~\ref{oopseEq:lm2},
1677 \begin{equation}
1678 \int_{t_1}^{t_2}\biggl [ \biggl(\frac{\partial L}{\partial q_1}
1679 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1680 \biggr)
1681 - \biggl( \frac{\partial L}{\partial q_1}
1682 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1683 \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1684 \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0.
1685 \label{oopseEq:lm3}
1686 \end{equation}
1687 Leading to,
1688 \begin{equation}
1689 \frac{\biggl(\frac{\partial L}{\partial q_1}
1690 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1691 \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1692 \frac{\biggl(\frac{\partial L}{\partial q_2}
1693 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1694 \biggr)}{\frac{\partial\sigma}{\partial q_2}}.
1695 \label{oopseEq:lm4}
1696 \end{equation}
1697 This relation can only be statisfied, if both are equal to a single
1698 function $-\lambda(t)$,
1699 \begin{align}
1700 \frac{\biggl(\frac{\partial L}{\partial q_1}
1701 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1702 \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t), \\
1703 %
1704 \frac{\partial L}{\partial q_1}
1705 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1706 -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} ,\\
1707 %
1708 \frac{\partial L}{\partial q_1}
1709 - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1710 + \mathcal{G}_i &= 0,
1711 \end{align}
1712 where $\mathcal{G}_i$, the force of constraint on $i$, is:
1713 \begin{equation}
1714 \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}.
1715 \label{oopseEq:lm5}
1716 \end{equation}
1717
1718 In a simulation, this would involve the solution of a set of $(m + n)$
1719 number of equations. Where $m$ is the number of constraints, and $n$
1720 is the number of constrained coordinates. In practice, this is not
1721 done, as the matrix inversion necessary to solve the system of
1722 equations would be very time consuming to solve. Additionally, the
1723 numerical error in the solution of the set of $\lambda$'s would be
1724 compounded by the error inherent in propagating by the Velocity Verlet
1725 algorithm ($\Delta t^4$). The Verlet propagation error is negligible
1726 in an unconstrained system, as one is interested in the statistics of
1727 the run, and not that the run be numerically exact to the ``true''
1728 integration. This relates back to the ergodic hypothesis that a time
1729 integral of a valid trajectory will still give the correct ensemble
1730 average. However, in the case of constraints, if the equations of
1731 motion leave the ``true'' trajectory, they are departing from the
1732 constrained surface. The method that is used, is to iteratively solve
1733 for $\lambda(t)$ at each time step.
1734
1735 In {\sc rattle} the equations of motion are modified subject to the
1736 following two constraints:
1737 \begin{align}
1738 \sigma_{ij}[\mathbf{r}(t)] \equiv
1739 [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2 - d_{ij}^2 &= 0 %
1740 \label{oopseEq:c1}, \\
1741 %
1742 [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1743 [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 .\label{oopseEq:c2}
1744 \end{align}
1745 Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1746 the constrained distance between atom $i$ and
1747 $j$. Eq.~\ref{oopseEq:c2} constrains the velocities of $i$ and $j$ to
1748 be perpendicular to the bond vector, so that the bond can neither grow
1749 nor shrink. The constrained dynamics equations become:
1750 \begin{equation}
1751 m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i,
1752 \label{oopseEq:r1}
1753 \end{equation}
1754 where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1755 and are defined:
1756 \begin{equation}
1757 \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}.
1758 \label{oopseEq:r2}
1759 \end{equation}
1760
1761 In Velocity Verlet, if $\Delta t = h$, the propagation can be written:
1762 \begin{align}
1763 \mathbf{r}_i(t+h) &=
1764 \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1765 \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1766 \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1}, \\
1767 %
1768 \mathbf{\dot{r}}_i(t+h) &=
1769 \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1770 \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1771 \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] ,%
1772 \label{oopseEq:vv2}
1773 \end{align}
1774 where:
1775 \begin{align}
1776 \mathbf{\mathcal{G}}_{Ri}(t) &=
1777 -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) ,\\
1778 %
1779 \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1780 -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h).
1781 \end{align}
1782 Next, define:
1783 \begin{align}
1784 g_{ij} &= h \lambda_{Rij}(t) ,\\
1785 k_{ij} &= h \lambda_{Vij}(t+h), \\
1786 \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1787 - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t).
1788 \end{align}
1789 Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1790 can be rewritten as,
1791 \begin{align}
1792 \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i ,\\
1793 %
1794 \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1795 -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h).
1796 \end{align}
1797
1798 To integrate the equations of motion, the {\sc rattle} algorithm first
1799 solves for $\mathbf{r}(t+h)$. Let,
1800 \begin{equation}
1801 \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t).
1802 \end{equation}
1803 Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1804 pick a constraint $j$, and let,
1805 \begin{equation}
1806 \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1807 - \mathbf{r}_j(t) + h\mathbf{q}_j(t).
1808 \label{oopseEq:ra1}
1809 \end{equation}
1810 If
1811 \begin{equation}
1812 \Big| |\mathbf{s}|^2 - d_{ij}^2 \Big| > \text{tolerance},
1813 \end{equation}
1814 then the constraint is unsatisfied, and corrections are made to the
1815 positions. First we define a test corrected configuration as,
1816 \begin{align}
1817 \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1818 g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] ,\\
1819 %
1820 \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1821 g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr].
1822 \end{align}
1823 And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1824 = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1825 approximation,
1826 \begin{equation}
1827 g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1828 (\frac{1}{m_i} + \frac{1}{m_j})}.
1829 \end{equation}
1830 Although not an exact solution for $g_{ij}$, as this is an iterative
1831 scheme overall, the eventual solution will converge. With a trial
1832 $g_{ij}$, the new $\mathbf{q}$'s become,
1833 \begin{align}
1834 \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1835 \frac{\mathbf{r}_{ij}(t)}{m_i} ,\\
1836 %
1837 \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1838 \frac{\mathbf{r}_{ij}(t)}{m_j} .
1839 \end{align}
1840 The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1841 all constraints are satisfied.
1842
1843 The second step of {\sc rattle}, is to then update the velocities. The
1844 step starts with,
1845 \begin{equation}
1846 \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h).
1847 \end{equation}
1848 Next we pick a constraint $j$, and calculate the dot product $\ell$.
1849 \begin{equation}
1850 \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h).
1851 \label{oopseEq:rv1}
1852 \end{equation}
1853 Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
1854 zero. Therefore if $\ell$ is greater than some tolerance, then
1855 corrections are made to the $i$ and $j$ velocities.
1856 \begin{align}
1857 \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1858 \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i}, \\
1859 %
1860 \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1861 \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}.
1862 \end{align}
1863 Like in the previous step, we select a value for $k_{ij}$ such that
1864 $\ell$ is zero.
1865 \begin{equation}
1866 k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}.
1867 \end{equation}
1868 The test velocities, $\mathbf{\dot{r}}^T_i$ and
1869 $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
1870 the algorithm is iterated from Eq.~\ref{oopseEq:rv1} until all
1871 constraints are satisfied.
1872
1873
1874 \subsection{\label{oopseSec:zcons}Z-Constraint Method}
1875
1876 Based on the fluctuation-dissipation theorem, a force auto-correlation
1877 method was developed by Roux and Karplus to investigate the dynamics
1878 of ions inside ion channels.\cite{Roux91} The time-dependent friction
1879 coefficient can be calculated from the deviation of the instantaneous
1880 force from its mean force.
1881 \begin{equation}
1882 \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
1883 \end{equation}
1884 where%
1885 \begin{equation}
1886 \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
1887 \end{equation}
1888
1889
1890 If the time-dependent friction decays rapidly, the static friction
1891 coefficient can be approximated by
1892 \begin{equation}
1893 \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt.
1894 \end{equation}
1895 Allowing diffusion constant to then be calculated through the
1896 Einstein relation:\cite{Marrink94}
1897 \begin{equation}
1898 D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1899 }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
1900 \end{equation}
1901
1902 The Z-Constraint method, which fixes the z coordinates of the
1903 molecules with respect to the center of the mass of the system, has
1904 been a method suggested to obtain the forces required for the force
1905 auto-correlation calculation.\cite{Marrink94} However, simply resetting the
1906 coordinate will move the center of the mass of the whole system. To
1907 avoid this problem, a new method was used in {\sc oopse}. Instead of
1908 resetting the coordinate, we reset the forces of z-constrained
1909 molecules as well as subtract the total constraint forces from the
1910 rest of the system after the force calculation at each time step.
1911
1912 After the force calculation, define $G_\alpha$ as
1913 \begin{equation}
1914 G_{\alpha} = \sum_i F_{\alpha i},
1915 \label{oopseEq:zc1}
1916 \end{equation}
1917 where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
1918 z-constrained molecule $\alpha$. The forces of the z constrained
1919 molecule are then set to:
1920 \begin{equation}
1921 F_{\alpha i} = F_{\alpha i} -
1922 \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
1923 \end{equation}
1924 Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
1925 molecule. Having rescaled the forces, the velocities must also be
1926 rescaled to subtract out any center of mass velocity in the z
1927 direction.
1928 \begin{equation}
1929 v_{\alpha i} = v_{\alpha i} -
1930 \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
1931 \end{equation}
1932 where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
1933 Lastly, all of the accumulated z constrained forces must be subtracted
1934 from the system to keep the system center of mass from drifting.
1935 \begin{equation}
1936 F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha} G_{\alpha}}
1937 {\sum_{\beta}\sum_i m_{\beta i}},
1938 \end{equation}
1939 where $\beta$ are all of the unconstrained molecules in the
1940 system. Similarly, the velocities of the unconstrained molecules must
1941 also be scaled.
1942 \begin{equation}
1943 v_{\beta i} = v_{\beta i} + \sum_{\alpha}
1944 \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
1945 \end{equation}
1946
1947 At the very beginning of the simulation, the molecules may not be at their
1948 constrained positions. To move a z-constrained molecule to its specified
1949 position, a simple harmonic potential is used
1950 \begin{equation}
1951 U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
1952 \end{equation}
1953 where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ is the
1954 current $z$ coordinate of the center of mass of the constrained molecule, and
1955 $z_{\text{cons}}$ is the constrained position. The harmonic force operating
1956 on the z-constrained molecule at time $t$ can be calculated by
1957 \begin{equation}
1958 F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1959 -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
1960 \end{equation}
1961
1962 \section{\label{oopseSec:props}Trajectory Analysis}
1963
1964 \subsection{\label{oopseSec:staticProps}Static Property Analysis}
1965
1966 The static properties of the trajectories are analyzed with the
1967 program \texttt{staticProps}. The code is capable of calculating a
1968 number of pair correlations between species A and B. Some of which
1969 only apply to directional entities. The summary of pair correlations
1970 can be found in Table~\ref{oopseTb:gofrs}
1971
1972 \begin{table}
1973 \caption{THE DIFFERENT PAIR CORRELATIONS IN \texttt{staticProps}}
1974 \label{oopseTb:gofrs}
1975 \begin{center}
1976 \begin{tabular}{|l|c|c|}
1977 \hline
1978 Name & Equation & Directional Atom \\ \hline
1979 $g_{\text{AB}}(r)$ & Eq.~\ref{eq:gofr} & neither \\ \hline
1980 $g_{\text{AB}}(r, \cos \theta)$ & Eq.~\ref{eq:gofrCosTheta} & A \\ \hline
1981 $g_{\text{AB}}(r, \cos \omega)$ & Eq.~\ref{eq:gofrCosOmega} & both \\ \hline
1982 $g_{\text{AB}}(x, y, z)$ & Eq.~\ref{eq:gofrXYZ} & neither \\ \hline
1983 $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\ref{eq:cosOmegaOfR} &%
1984 both \\ \hline
1985 \end{tabular}
1986 \begin{minipage}{\linewidth}
1987 \centering
1988 \vspace{2mm}
1989 The third column specifies which atom, if any, need be a directional entity.
1990 \end{minipage}
1991 \end{center}
1992 \end{table}
1993
1994 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
1995 \begin{equation}
1996 g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
1997 \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
1998 \delta( r - |\mathbf{r}_{ij}|) \rangle, \label{eq:gofr}
1999 \end{equation}
2000 where $\mathbf{r}_{ij}$ is the vector
2001 \begin{equation*}
2002 \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i, \notag
2003 \end{equation*}
2004 and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
2005 the expected pair density at a given $r$.
2006
2007 The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
2008 $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
2009 dimensional histograms. Both use $r$ for the primary axis then a
2010 $\cos$ for the secondary axis ($\cos \theta$ for
2011 Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
2012 Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
2013 correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
2014 \theta)$ is defined as follows:
2015 \begin{equation}
2016 g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2017 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2018 \delta( \cos \theta - \cos \theta_{ij})
2019 \delta( r - |\mathbf{r}_{ij}|) \rangle.
2020 \label{eq:gofrCosTheta}
2021 \end{equation}
2022 Here
2023 \begin{equation*}
2024 \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij},
2025 \end{equation*}
2026 where $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2027 and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
2028 $\mathbf{r}_{ij}$.
2029
2030 The second two dimensional histogram is of the form:
2031 \begin{equation}
2032 g_{\text{AB}}(r, \cos \omega) =
2033 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2034 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2035 \delta( \cos \omega - \cos \omega_{ij})
2036 \delta( r - |\mathbf{r}_{ij}|) \rangle. \label{eq:gofrCosOmega}
2037 \end{equation}
2038 Here
2039 \begin{equation*}
2040 \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}.
2041 \end{equation*}
2042 Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
2043 directional vectors of species $i$ and $j$.
2044
2045 The static analysis code is also cable of calculating a three
2046 dimensional pair correlation of the form:
2047 \begin{equation}\label{eq:gofrXYZ}
2048 g_{\text{AB}}(x, y, z) =
2049 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2050 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2051 \delta( x - x_{ij})
2052 \delta( y - y_{ij})
2053 \delta( z - z_{ij}) \rangle,
2054 \end{equation}
2055 where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2056 components respectively of vector $\mathbf{r}_{ij}$.
2057
2058 The final pair correlation is similar to
2059 Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
2060 \rangle_{\text{AB}}(r)$ is calculated in the following way:
2061 \begin{equation}\label{eq:cosOmegaOfR}
2062 \langle \cos \omega \rangle_{\text{AB}}(r) =
2063 \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2064 (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle.
2065 \end{equation}
2066 Here $\cos \omega_{ij}$ is defined in the same way as in
2067 Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
2068 correlation that gives the average correlation of two directional
2069 entities as a function of their distance from each other.
2070
2071 \subsection{\label{dynamicProps}Dynamic Property Analysis}
2072
2073 The dynamic properties of a trajectory are calculated with the program
2074 \texttt{dynamicProps}. The program calculates the following properties:
2075 \begin{gather}
2076 \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle, \label{eq:rms}\\
2077 \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle, \label{eq:velCorr} \\
2078 \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle. \label{eq:angularVelCorr}
2079 \end{gather}
2080
2081 Eq.~\ref{eq:rms} is the root mean square displacement function. Which
2082 allows one to observe the average displacement of an atom as a
2083 function of time. The quantity is useful when calculating diffusion
2084 coefficients because of the Einstein Relation, which is valid at long
2085 times.\cite{allen87:csl}
2086 \begin{equation}
2087 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle.
2088 \label{oopseEq:einstein}
2089 \end{equation}
2090
2091 Eq.~\ref{eq:velCorr} and \ref{eq:angularVelCorr} are the translational
2092 velocity and angular velocity correlation functions respectively. The
2093 latter is only applicable to directional species in the
2094 simulation. The velocity autocorrelation functions are useful when
2095 determining vibrational information about the system of interest.
2096
2097 \section{\label{oopseSec:design}Program Design}
2098
2099 \subsection{\label{sec:architecture} {\sc oopse} Architecture}
2100
2101 The core of OOPSE is divided into two main object libraries:
2102 \texttt{libBASS} and \texttt{libmdtools}. \texttt{libBASS} is the
2103 library developed around the parsing engine and \texttt{libmdtools}
2104 is the software library developed around the simulation engine. These
2105 two libraries are designed to encompass all the basic functions and
2106 tools that {\sc oopse} provides. Utility programs, such as the
2107 property analyzers, need only link against the software libraries to
2108 gain access to parsing, force evaluation, and input / output
2109 routines.
2110
2111 Contained in \texttt{libBASS} are all the routines associated with
2112 reading and parsing the \texttt{.bass} input files. Given a
2113 \texttt{.bass} file, \texttt{libBASS} will open it and any associated
2114 \texttt{.mdl} files; then create structures in memory that are
2115 templates of all the molecules specified in the input files. In
2116 addition, any simulation parameters set in the \texttt{.bass} file
2117 will be placed in a structure for later query by the controlling
2118 program.
2119
2120 Located in \texttt{libmdtools} are all other routines necessary to a
2121 Molecular Dynamics simulation. The library uses the main data
2122 structures returned by \texttt{libBASS} to initialize the various
2123 parts of the simulation: the atom structures and positions, the force
2124 field, the integrator, \emph{et cetera}. After initialization, the
2125 library can be used to perform a variety of tasks: integrate a
2126 Molecular Dynamics trajectory, query phase space information from a
2127 specific frame of a completed trajectory, or even recalculate force or
2128 energetic information about specific frames from a completed
2129 trajectory.
2130
2131 With these core libraries in place, several programs have been
2132 developed to utilize the routines provided by \texttt{libBASS} and
2133 \texttt{libmdtools}. The main program of the package is \texttt{oopse}
2134 and the corresponding parallel version \texttt{oopse\_MPI}. These two
2135 programs will take the \texttt{.bass} file, and create (and integrate)
2136 the simulation specified in the script. The two analysis programs
2137 \texttt{staticProps} and \texttt{dynamicProps} utilize the core
2138 libraries to initialize and read in trajectories from previously
2139 completed simulations, in addition to the ability to use functionality
2140 from \texttt{libmdtools} to recalculate forces and energies at key
2141 frames in the trajectories. Lastly, the family of system building
2142 programs (Sec.~\ref{oopseSec:initCoords}) also use the libraries to
2143 store and output the system configurations they create.
2144
2145 \subsection{\label{oopseSec:parallelization} Parallelization of {\sc oopse}}
2146
2147 Although processor power is continually growing roughly following
2148 Moore's Law, it is still unreasonable to simulate systems of more then
2149 a 1000 atoms on a single processor. To facilitate study of larger
2150 system sizes or smaller systems on long time scales in a reasonable
2151 period of time, parallel methods were developed allowing multiple
2152 CPU's to share the simulation workload. Three general categories of
2153 parallel decomposition methods have been developed including atomic,
2154 spatial and force decomposition methods.
2155
2156 Algorithmically simplest of the three methods is atomic decomposition
2157 where N particles in a simulation are split among P processors for the
2158 duration of the simulation. Computational cost scales as an optimal
2159 $\mathcal{O}(N/P)$ for atomic decomposition. Unfortunately all
2160 processors must communicate positions and forces with all other
2161 processors at every force evaluation, leading communication costs to
2162 scale as an unfavorable $\mathcal{O}(N)$, \emph{independent of the
2163 number of processors}. This communication bottleneck led to the
2164 development of spatial and force decomposition methods in which
2165 communication among processors scales much more favorably. Spatial or
2166 domain decomposition divides the physical spatial domain into 3D boxes
2167 in which each processor is responsible for calculation of forces and
2168 positions of particles located in its box. Particles are reassigned to
2169 different processors as they move through simulation space. To
2170 calculate forces on a given particle, a processor must know the
2171 positions of particles within some cutoff radius located on nearby
2172 processors instead of the positions of particles on all
2173 processors. Both communication between processors and computation
2174 scale as $\mathcal{O}(N/P)$ in the spatial method. However, spatial
2175 decomposition adds algorithmic complexity to the simulation code and
2176 is not very efficient for small N since the overall communication
2177 scales as the surface to volume ratio $\mathcal{O}(N/P)^{2/3}$ in
2178 three dimensions.
2179
2180 The parallelization method used in {\sc oopse} is the force
2181 decomposition method. Force decomposition assigns particles to
2182 processors based on a block decomposition of the force
2183 matrix. Processors are split into an optimally square grid forming row
2184 and column processor groups. Forces are calculated on particles in a
2185 given row by particles located in that processors column
2186 assignment. Force decomposition is less complex to implement than the
2187 spatial method but still scales computationally as $\mathcal{O}(N/P)$
2188 and scales as $\mathcal{O}(N/\sqrt{P})$ in communication
2189 cost. Plimpton has also found that force decompositions scale more
2190 favorably than spatial decompositions for systems up to 10,000 atoms
2191 and favorably compete with spatial methods up to 100,000
2192 atoms.\cite{plimpton95}
2193
2194 \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
2195
2196 For large simulations, the trajectory files can sometimes reach sizes
2197 in excess of several gigabytes. In order to effectively analyze that
2198 amount of data, two memory management schemes have been devised for
2199 \texttt{staticProps} and for \texttt{dynamicProps}. The first scheme,
2200 developed for \texttt{staticProps}, is the simplest. As each frame's
2201 statistics are calculated independent of each other, memory is
2202 allocated for each frame, then freed once correlation calculations are
2203 complete for the snapshot. To prevent multiple passes through a
2204 potentially large file, \texttt{staticProps} is capable of calculating
2205 all requested correlations per frame with only a single pair loop in
2206 each frame and a single read of the file.
2207
2208 The second, more advanced memory scheme, is used by
2209 \texttt{dynamicProps}. Here, the program must have multiple frames in
2210 memory to calculate time dependent correlations. In order to prevent a
2211 situation where the program runs out of memory due to large
2212 trajectories, the user is able to specify that the trajectory be read
2213 in blocks. The number of frames in each block is specified by the
2214 user, and upon reading a block of the trajectory,
2215 \texttt{dynamicProps} will calculate all of the time correlation frame
2216 pairs within the block. After in-block correlations are complete, a
2217 second block of the trajectory is read, and the cross correlations are
2218 calculated between the two blocks. This second block is then freed and
2219 then incremented and the process repeated until the end of the
2220 trajectory. Once the end is reached, the first block is freed then
2221 incremented, and the again the internal time correlations are
2222 calculated. The algorithm with the second block is then repeated with
2223 the new origin block, until all frame pairs have been correlated in
2224 time. This process is illustrated in
2225 Fig.~\ref{oopseFig:dynamicPropsMemory}.
2226
2227 %\begin{figure}
2228 %\centering
2229 %\includegraphics[width=\linewidth]{dynamicPropsMem.eps}
2230 %\caption[A representation of the block correlations in \texttt{dynamicProps}]{This diagram illustrates the memory management used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
2231 %\label{oopseFig:dynamicPropsMemory}
2232 %\end{figure}
2233
2234 \section{\label{oopseSec:conclusion}Conclusion}
2235
2236 We have presented the design and implementation of our open source
2237 simulation package {\sc oopse}. The package offers novel capabilities
2238 to the field of Molecular Dynamics simulation packages in the form of
2239 dipolar force fields, and symplectic integration of rigid body
2240 dynamics. It is capable of scaling across multiple processors through
2241 the use of force based decomposition using MPI. It also implements
2242 several advanced integrators allowing the end user control over
2243 temperature and pressure. In addition, it is capable of integrating
2244 constrained dynamics through both the {\sc rattle} algorithm and the
2245 z-constraint method.
2246
2247 These features are all brought together in a single open-source
2248 program. This allows researchers to not only benefit from
2249 {\sc oopse}, but also contribute to {\sc oopse}'s development as
2250 well.
2251
2252
2253 \newpage
2254 \section{Acknowledgments}
2255 The authors would like to thank espresso for fueling this work, and
2256 would also like to send a special acknowledgement to single malt
2257 scotch for its wonderful calming effects and its ability to make the
2258 troubles of the world float away.
2259
2260 \bibliographystyle{achemso}
2261 \bibliography{oopsePaper}
2262
2263 \end{document}