1 |
\documentclass{article}%
|
2 |
\usepackage{amsfonts}
|
3 |
\usepackage{amsmath}
|
4 |
\usepackage{amssymb}
|
5 |
\usepackage{graphicx}%
|
6 |
\setcounter{MaxMatrixCols}{30}
|
7 |
%TCIDATA{OutputFilter=latex2.dll}
|
8 |
%TCIDATA{Version=5.00.0.2552}
|
9 |
%TCIDATA{CSTFile=40 LaTeX article.cst}
|
10 |
%TCIDATA{Created=Friday, September 19, 2003 08:29:53}
|
11 |
%TCIDATA{LastRevised=Wednesday, January 07, 2004 10:20:42}
|
12 |
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
|
13 |
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
|
14 |
%TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
|
15 |
%TCIDATA{ComputeDefs=
|
16 |
%$H$
|
17 |
%}
|
18 |
\newtheorem{theorem}{Theorem}
|
19 |
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
|
20 |
\newtheorem{algorithm}[theorem]{Algorithm}
|
21 |
\newtheorem{axiom}[theorem]{Axiom}
|
22 |
\newtheorem{case}[theorem]{Case}
|
23 |
\newtheorem{claim}[theorem]{Claim}
|
24 |
\newtheorem{conclusion}[theorem]{Conclusion}
|
25 |
\newtheorem{condition}[theorem]{Condition}
|
26 |
\newtheorem{conjecture}[theorem]{Conjecture}
|
27 |
\newtheorem{corollary}[theorem]{Corollary}
|
28 |
\newtheorem{criterion}[theorem]{Criterion}
|
29 |
\newtheorem{definition}[theorem]{Definition}
|
30 |
\newtheorem{example}[theorem]{Example}
|
31 |
\newtheorem{exercise}[theorem]{Exercise}
|
32 |
\newtheorem{lemma}[theorem]{Lemma}
|
33 |
\newtheorem{notation}[theorem]{Notation}
|
34 |
\newtheorem{problem}[theorem]{Problem}
|
35 |
\newtheorem{proposition}[theorem]{Proposition}
|
36 |
\newtheorem{remark}[theorem]{Remark}
|
37 |
\newtheorem{solution}[theorem]{Solution}
|
38 |
\newtheorem{summary}[theorem]{Summary}
|
39 |
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
|
40 |
\begin{document}
|
41 |
\section{\label{Sec:pbc}Periodic Boundary Conditions}
|
42 |
|
43 |
\textit{Periodic boundary conditions} are widely used to simulate truly
|
44 |
macroscopic systems with a relatively small number of particles. Simulation
|
45 |
box is replicated throughout space to form an infinite lattice. During the
|
46 |
simulation, when a particle moves in the primary cell, its periodic image
|
47 |
particles in other boxes move in exactly the same direction with exactly the
|
48 |
same orientation.Thus, as a particle leaves the primary cell, one of its
|
49 |
images will enter through the opposite face.If the simulation box is large
|
50 |
enough to avoid "feeling" the symmetric of the periodic lattice,the surface
|
51 |
effect could be ignored. Cubic and parallelepiped are the available periodic
|
52 |
cells. \bigskip In OOPSE, we use the matrix instead of the vector to describe
|
53 |
the property of the simulation box. Therefore, not only the size of the
|
54 |
simulation box could be changed during the simulation, but also the shape of
|
55 |
it. The transformation from box space vector $\overrightarrow{s}$ to its
|
56 |
corresponding real space vector $\overrightarrow{r}$ is defined by
|
57 |
\begin{equation}
|
58 |
\overrightarrow{r}=H\overrightarrow{s}%
|
59 |
\end{equation}
|
60 |
|
61 |
|
62 |
where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
|
63 |
box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the sides of the
|
64 |
simulation box respectively.
|
65 |
|
66 |
To find the minimum image, we need to convert the real vector to its
|
67 |
corresponding vector in box space first, \bigskip%
|
68 |
\begin{equation}
|
69 |
\overrightarrow{s}=H^{-1}\overrightarrow{r}%
|
70 |
\end{equation}
|
71 |
And then, each element of $\overrightarrow{s}$ is casted to lie between -0.5
|
72 |
to 0.5,
|
73 |
\begin{equation}
|
74 |
s_{i}^{\prime}=s_{i}-round(s_{i})
|
75 |
\end{equation}
|
76 |
where%
|
77 |
|
78 |
\begin{equation}
|
79 |
round(x)=\lfloor{x+0.5}\rfloor\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{
|
80 |
}x\geqslant0
|
81 |
\end{equation}
|
82 |
%
|
83 |
|
84 |
\begin{equation}
|
85 |
round(x)=\lceil{x-0.5}\rceil\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{ }x<0
|
86 |
\end{equation}
|
87 |
|
88 |
|
89 |
For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
|
90 |
|
91 |
Finally, we could get the minimum image by transforming back to real space,%
|
92 |
|
93 |
\begin{equation}
|
94 |
\overrightarrow{r^{\prime}}=H^{-1}\overrightarrow{s^{\prime}}%
|
95 |
\end{equation}
|
96 |
|
97 |
|
98 |
|
99 |
\end{document} |