ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/pbc.tex
Revision: 904
Committed: Wed Jan 7 15:21:00 2004 UTC (21 years, 4 months ago) by tim
Content type: application/x-tex
File size: 3836 byte(s)
Log Message:
*** empty log message ***

File Contents

# Content
1 \documentclass{article}%
2 \usepackage{amsfonts}
3 \usepackage{amsmath}
4 \usepackage{amssymb}
5 \usepackage{graphicx}%
6 \setcounter{MaxMatrixCols}{30}
7 %TCIDATA{OutputFilter=latex2.dll}
8 %TCIDATA{Version=5.00.0.2552}
9 %TCIDATA{CSTFile=40 LaTeX article.cst}
10 %TCIDATA{Created=Friday, September 19, 2003 08:29:53}
11 %TCIDATA{LastRevised=Wednesday, January 07, 2004 10:20:42}
12 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
13 %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
14 %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
15 %TCIDATA{ComputeDefs=
16 %$H$
17 %}
18 \newtheorem{theorem}{Theorem}
19 \newtheorem{acknowledgement}[theorem]{Acknowledgement}
20 \newtheorem{algorithm}[theorem]{Algorithm}
21 \newtheorem{axiom}[theorem]{Axiom}
22 \newtheorem{case}[theorem]{Case}
23 \newtheorem{claim}[theorem]{Claim}
24 \newtheorem{conclusion}[theorem]{Conclusion}
25 \newtheorem{condition}[theorem]{Condition}
26 \newtheorem{conjecture}[theorem]{Conjecture}
27 \newtheorem{corollary}[theorem]{Corollary}
28 \newtheorem{criterion}[theorem]{Criterion}
29 \newtheorem{definition}[theorem]{Definition}
30 \newtheorem{example}[theorem]{Example}
31 \newtheorem{exercise}[theorem]{Exercise}
32 \newtheorem{lemma}[theorem]{Lemma}
33 \newtheorem{notation}[theorem]{Notation}
34 \newtheorem{problem}[theorem]{Problem}
35 \newtheorem{proposition}[theorem]{Proposition}
36 \newtheorem{remark}[theorem]{Remark}
37 \newtheorem{solution}[theorem]{Solution}
38 \newtheorem{summary}[theorem]{Summary}
39 \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
40 \begin{document}
41 \section{\label{Sec:pbc}Periodic Boundary Conditions}
42
43 \textit{Periodic boundary conditions} are widely used to simulate truly
44 macroscopic systems with a relatively small number of particles. Simulation
45 box is replicated throughout space to form an infinite lattice. During the
46 simulation, when a particle moves in the primary cell, its periodic image
47 particles in other boxes move in exactly the same direction with exactly the
48 same orientation.Thus, as a particle leaves the primary cell, one of its
49 images will enter through the opposite face.If the simulation box is large
50 enough to avoid "feeling" the symmetric of the periodic lattice,the surface
51 effect could be ignored. Cubic and parallelepiped are the available periodic
52 cells. \bigskip In OOPSE, we use the matrix instead of the vector to describe
53 the property of the simulation box. Therefore, not only the size of the
54 simulation box could be changed during the simulation, but also the shape of
55 it. The transformation from box space vector $\overrightarrow{s}$ to its
56 corresponding real space vector $\overrightarrow{r}$ is defined by
57 \begin{equation}
58 \overrightarrow{r}=H\overrightarrow{s}%
59 \end{equation}
60
61
62 where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
63 box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the sides of the
64 simulation box respectively.
65
66 To find the minimum image, we need to convert the real vector to its
67 corresponding vector in box space first, \bigskip%
68 \begin{equation}
69 \overrightarrow{s}=H^{-1}\overrightarrow{r}%
70 \end{equation}
71 And then, each element of $\overrightarrow{s}$ is casted to lie between -0.5
72 to 0.5,
73 \begin{equation}
74 s_{i}^{\prime}=s_{i}-round(s_{i})
75 \end{equation}
76 where%
77
78 \begin{equation}
79 round(x)=\lfloor{x+0.5}\rfloor\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{
80 }x\geqslant0
81 \end{equation}
82 %
83
84 \begin{equation}
85 round(x)=\lceil{x-0.5}\rceil\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{ }x<0
86 \end{equation}
87
88
89 For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
90
91 Finally, we could get the minimum image by transforming back to real space,%
92
93 \begin{equation}
94 \overrightarrow{r^{\prime}}=H^{-1}\overrightarrow{s^{\prime}}%
95 \end{equation}
96
97
98
99 \end{document}

Properties

Name Value
svn:executable *