ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/zcons.tex
Revision: 818
Committed: Fri Oct 24 21:27:59 2003 UTC (21 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 2805 byte(s)
Log Message:
Formatting changes to get out of RevTex nonsense

File Contents

# User Rev Content
1 tim 779 \section{\label{Sec:zcons}Z-Constraint Method}
2    
3     Based on fluctuatin-dissipation theorem,\bigskip\ force auto-correlation
4     method was developed to investigate the dynamics of ions inside the ion
5     channels.\cite{Roux91} Time-dependent friction coefficient can be calculated
6     from the deviation of the instaneous force from its mean force.
7    
8     %
9    
10     \begin{equation}
11     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
12     \end{equation}
13    
14    
15     where%
16     \begin{equation}
17     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
18     \end{equation}
19    
20    
21     If the time-dependent friction decay rapidly, static friction coefficient can
22     be approximated by%
23    
24     \begin{equation}
25     \xi^{static}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
26     \end{equation}
27    
28    
29     Hence, diffusion constant can be estimated by
30     \begin{equation}
31     D(z)=\frac{k_{B}T}{\xi^{static}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
32     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
33     \end{equation}
34    
35    
36     \bigskip Z-Constraint method, which fixed the z coordinates of the molecules
37     with respect to the center of the mass of the system, was proposed to obtain
38     the forces required in force auto-correlation method.\cite{Marrink94} However,
39     simply resetting the coordinate will move the center of the mass of the whole
40 gezelter 818 system. To avoid this problem, a new method was used at {\sc oopse}. Instead of
41 tim 779 resetting the coordinate, we reset the forces of z-constraint molecules as
42     well as subtract the total constraint forces from the rest of the system after
43     force calculation at each time step.
44     \begin{verbatim}
45     $F_{\alpha i}=0$
46     $V_{\alpha i}=V_{\alpha i}-\frac{\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{i}M_{_{\alpha i}}}$
47     $F_{\alpha i}=F_{\alpha i}-\frac{M_{_{\alpha i}}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}\sum\limits_{\beta}F_{\beta}$
48     $V_{\alpha i}=V_{\alpha i}-\frac{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}$
49     \end{verbatim}
50    
51     At the very beginning of the simulation, the molecules may not be at its
52     constraint position. To move the z-constraint molecule to the specified
53     position, a simple harmonic potential is used%
54    
55     \begin{equation}
56     U(t)=\frac{1}{2}k_{Harmonic}(z(t)-z_{cons})^{2}%
57     \end{equation}
58     where $k_{Harmonic}$\bigskip\ is the harmonic force constant, $z(t)$ is
59     current z coordinate of the center of mass of the z-constraint molecule, and
60     $z_{cons}$ is the restraint position. Therefore, the harmonic force operated
61     on the z-constraint molecule at time $t$ can be calculated by%
62     \begin{equation}
63     F_{z_{Harmonic}}(t)=-\frac{\partial U(t)}{\partial z(t)}=-k_{Harmonic}%
64     (z(t)-z_{cons})
65     \end{equation}
66     Worthy of mention, other kinds of potential functions can also be used to
67 gezelter 818 drive the z-constraint molecule.