ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/ripple2/submission/EX10099.tex
Revision: 3350
Committed: Fri Feb 29 21:58:14 2008 UTC (17 years, 3 months ago) by gezelter
Content type: application/x-tex
File size: 49319 byte(s)
Log Message:
Adding submitted version

File Contents

# User Rev Content
1 gezelter 3350 %\documentclass[aps,pre,twocolumn,amssymb,showpacs,floatfix]{revtex4}
2     \documentclass[aps,pre,preprint,amssymb,showpacs]{revtex4}
3     \usepackage{graphicx}
4    
5     \begin{document}
6     \renewcommand{\thefootnote}{\fnsymbol{footnote}}
7     \renewcommand{\theequation}{\arabic{section}.\arabic{equation}}
8    
9     %\bibliographystyle{aps}
10    
11     \title{Spontaneous Corrugation of Dipolar Membranes}
12     \author{Xiuquan Sun and J. Daniel Gezelter}
13     \email[E-mail:]{gezelter@nd.edu}
14     \affiliation{Department of Chemistry and Biochemistry,\\
15     University of Notre Dame, \\
16     Notre Dame, Indiana 46556}
17    
18     \date{\today}
19    
20     \begin{abstract}
21     We present a simple model for dipolar elastic membranes that gives
22     lattice-bound point dipoles complete orientational freedom as well as
23     translational freedom along one coordinate (out of the plane of the
24     membrane). There is an additional harmonic term which binds each of
25     the dipoles to the six nearest neighbors on either triangular or
26     distorted lattices. The translational freedom of the dipoles allows
27     triangular lattices to find states that break out of the normal
28     orientational disorder of frustrated configurations and which are
29     stabilized by long-range anti-ferroelectric ordering. In order to
30     break out of the frustrated states, the dipolar membranes form
31     corrugated or ``rippled'' phases that make the lattices effectively
32     non-triangular. We observe three common features of the corrugated
33     dipolar membranes: 1) the corrugated phases develop easily when hosted
34     on triangular lattices, 2) the wave vectors for the surface ripples
35     are always found to be perpendicular to the dipole director axis, and
36     3) on triangular lattices, the dipole director axis is found to be
37     parallel to any of the three equivalent lattice directions.
38     \end{abstract}
39    
40     \pacs{68.03.Hj, 82.20.Wt}
41     \maketitle
42    
43    
44     \section{Introduction}
45     \label{Int}
46    
47     The properties of polymeric membranes are known to depend sensitively
48     on the details of the internal interactions between the constituent
49     monomers. A flexible membrane will always have a competition between
50     the energy of curvature and the in-plane stretching energy and will be
51     able to buckle in certain limits of surface tension and
52     temperature.\cite{Safran94} The buckling can be non-specific and
53     centered at dislocation~\cite{Seung1988} or grain-boundary
54     defects,\cite{Carraro1993} or it can be directional and cause long
55     ``roof-tile'' or tube-like structures to appear in
56     partially-polymerized phospholipid vesicles.\cite{Mutz1991}
57    
58     One would expect that anisotropic local interactions could lead to
59     interesting properties of the buckled membrane. We report here on the
60     buckling behavior of a membrane composed of harmonically-bound, but
61     freely-rotating electrostatic dipoles. The dipoles have strongly
62     anisotropic local interactions and the membrane exhibits coupling
63     between the buckling and the long-range ordering of the dipoles.
64    
65     Buckling behavior in liquid crystalline and biological membranes is a
66     well-known phenomenon. Relatively pure phosphatidylcholine (PC)
67     bilayers form a corrugated or ``rippled'' phase ($P_{\beta'}$) which
68     appears as an intermediate phase between the gel ($L_\beta$) and fluid
69     ($L_{\alpha}$) phases. The $P_{\beta'}$ phase has attracted
70     substantial experimental interest over the past 30 years. Most
71     structural information of the ripple phase has been obtained by the
72     X-ray diffraction~\cite{Sun96,Katsaras00} and freeze-fracture electron
73     microscopy (FFEM).~\cite{Copeland80,Meyer96} Recently, Kaasgaard {\it
74     et al.} used atomic force microscopy (AFM) to observe ripple phase
75     morphology in bilayers supported on mica.~\cite{Kaasgaard03} The
76     experimental results provide strong support for a 2-dimensional
77     triangular packing lattice of the lipid molecules within the ripple
78     phase. This is a notable change from the observed lipid packing
79     within the gel phase.~\cite{Cevc87} There have been a number of
80     theoretical
81     approaches~\cite{Marder84,Goldstein88,McCullough90,Lubensky93,Misbah98,Heimburg00,Kubica02,Bannerjee02}
82     (and some heroic
83     simulations~\cite{Ayton02,Jiang04,Brannigan04a,deVries05,deJoannis06})
84     undertaken to try to explain this phase, but to date, none have looked
85     specifically at the contribution of the dipolar character of the lipid
86     head groups towards this corrugation. Lipid chain interdigitation
87     certainly plays a major role, and the structures of the ripple phase
88     are highly ordered. The model we investigate here lacks chain
89     interdigitation (as well as the chains themselves!) and will not be
90     detailed enough to rule in favor of (or against) any of these
91     explanations for the $P_{\beta'}$ phase.
92    
93     Membranes containing electrostatic dipoles can also exhibit the
94     flexoelectric effect,\cite{Todorova2004,Harden2006,Petrov2006} which
95     is the ability of mechanical deformations to result in electrostatic
96     organization of the membrane. This phenomenon is a curvature-induced
97     membrane polarization which can lead to potential differences across a
98     membrane. Reverse flexoelectric behavior (in which applied currents
99     effect membrane curvature) has also been observed. Explanations of
100     the details of these effects have typically utilized membrane
101     polarization perpendicular to the face of the
102     membrane,\cite{Petrov2006} and the effect has been observed in both
103     biological,\cite{Raphael2000} bent-core liquid
104     crystalline,\cite{Harden2006} and polymer-dispersed liquid crystalline
105     membranes.\cite{Todorova2004}
106    
107     The problem with using atomistic and even coarse-grained approaches to
108     study membrane buckling phenomena is that only a relatively small
109     number of periods of the corrugation (i.e. one or two) can be
110     realistically simulated given current technology. Also, simulations
111     of lipid bilayers are traditionally carried out with periodic boundary
112     conditions in two or three dimensions and these have the potential to
113     enhance the periodicity of the system at that wavelength. To avoid
114     this pitfall, we are using a model which allows us to have
115     sufficiently large systems so that we are not causing artificial
116     corrugation through the use of periodic boundary conditions.
117    
118     The simplest dipolar membrane is one in which the dipoles are located
119     on fixed lattice sites. Ferroelectric states (with long-range dipolar
120     order) can be observed in dipolar systems with non-triangular
121     packings. However, {\em triangularly}-packed 2-D dipolar systems are
122     inherently frustrated and one would expect a dipolar-disordered phase
123     to be the lowest free energy
124     configuration.\cite{Toulouse1977,Marland1979} Dipolar lattices already
125     have rich phase behavior, but in order to allow the membrane to
126     buckle, a single degree of freedom (translation normal to the membrane
127     face) must be added to each of the dipoles. It would also be possible
128     to allow complete translational freedom. This approach
129     is similar in character to a number of elastic Ising models that have
130     been developed to explain interesting mechanical properties in
131     magnetic alloys.\cite{Renard1966,Zhu2005,Zhu2006,Jiang2006}
132    
133     What we present here is an attempt to find the simplest dipolar model
134     which will exhibit buckling behavior. We are using a modified XYZ
135     lattice model; details of the model can be found in section
136     \ref{sec:model}, results of Monte Carlo simulations using this model
137     are presented in section
138     \ref{sec:results}, and section \ref{sec:discussion} contains our conclusions.
139    
140     \section{2-D Dipolar Membrane}
141     \label{sec:model}
142    
143     The point of developing this model was to arrive at the simplest
144     possible theoretical model which could exhibit spontaneous corrugation
145     of a two-dimensional dipolar medium. Since molecules in polymerized
146     membranes and in the $P_{\beta'}$ ripple phase have limited
147     translational freedom, we have chosen a lattice to support the dipoles
148     in the x-y plane. The lattice may be either triangular (lattice
149     constants $a/b =
150     \sqrt{3}$) or distorted. However, each dipole has 3 degrees of
151     freedom. They may move freely {\em out} of the x-y plane (along the
152     $z$ axis), and they have complete orientational freedom ($0 <= \theta
153     <= \pi$, $0 <= \phi < 2
154     \pi$). This is essentially a modified X-Y-Z model with translational
155     freedom along the z-axis.
156    
157     The potential energy of the system,
158     \begin{eqnarray}
159     V = \sum_i & & \left( \sum_{j>i} \frac{|\mu|^2}{4\pi \epsilon_0 r_{ij}^3} \left[
160     {\mathbf{\hat u}_i} \cdot {\mathbf{\hat u}_j} -
161     3({\mathbf{\hat u}_i} \cdot {\mathbf{\hat
162     r}_{ij}})({\mathbf{\hat u}_j} \cdot {\mathbf{\hat r}_{ij}})\right]
163     \right. \nonumber \\
164     & & \left. + \sum_{j \in NN_i}^6 \frac{k_r}{2}\left(
165     r_{ij}-\sigma \right)^2 \right)
166     \label{eq:pot}
167     \end{eqnarray}
168    
169     In this potential, $\mathbf{\hat u}_i$ is the unit vector pointing
170     along dipole $i$ and $\mathbf{\hat r}_{ij}$ is the unit vector
171     pointing along the inter-dipole vector $\mathbf{r}_{ij}$. The entire
172     potential is governed by three parameters, the dipolar strength
173     ($\mu$), the harmonic spring constant ($k_r$) and the preferred
174     intermolecular spacing ($\sigma$). In practice, we set the value of
175     $\sigma$ to the average inter-molecular spacing from the planar
176     lattice, yielding a potential model that has only two parameters for a
177     particular choice of lattice constants $a$ (along the $x$-axis) and
178     $b$ (along the $y$-axis). We also define a set of reduced parameters
179     based on the length scale ($\sigma$) and the energy of the harmonic
180     potential at a deformation of 2 $\sigma$ ($\epsilon = k_r \sigma^2 /
181     2$). Using these two constants, we perform our calculations using
182     reduced distances, ($r^{*} = r / \sigma$), temperatures ($T^{*} = 2
183     k_B T / k_r \sigma^2$), densities ($\rho^{*} = N \sigma^2 / L_x L_y$),
184     and dipole moments ($\mu^{*} = \mu / \sqrt{4 \pi \epsilon_0 \sigma^5
185     k_r / 2}$). It should be noted that the density ($\rho^{*}$) depends
186     only on the mean particle spacing in the $x-y$ plane; the lattice is
187     fully populated.
188    
189     To investigate the phase behavior of this model, we have performed a
190     series of Metropolis Monte Carlo simulations of moderately-sized (34.3
191     $\sigma$ on a side) patches of membrane hosted on both triangular
192     ($\gamma = a/b = \sqrt{3}$) and distorted ($\gamma \neq \sqrt{3}$)
193     lattices. The linear extent of one edge of the monolayer was $20 a$
194     and the system was kept roughly square. The average distance that
195     coplanar dipoles were positioned from their six nearest neighbors was
196     1 $\sigma$ (on both triangular and distorted lattices). Typical
197     system sizes were 1360 dipoles for the triangular lattices and
198     840-2800 dipoles for the distorted lattices. Two-dimensional periodic
199     boundary conditions were used, and the cutoff for the dipole-dipole
200     interaction was set to 4.3 $\sigma$. This cutoff is roughly 2.5 times
201     the typical real-space electrostatic cutoff for molecular systems.
202     Since dipole-dipole interactions decay rapidly with distance, and
203     since the intrinsic three-dimensional periodicity of the Ewald sum can
204     give artifacts in 2-d systems, we have chosen not to use it in these
205     calculations. Although the Ewald sum has been reformulated to handle
206     2-D systems,\cite{Parry75,Parry76,Heyes77,deLeeuw79,Rhee89} these
207     methods are computationally expensive,\cite{Spohr97,Yeh99} and are not
208     necessary in this case. All parameters ($T^{*}$, $\mu^{*}$, and
209     $\gamma$) were varied systematically to study the effects of these
210     parameters on the formation of ripple-like phases.
211    
212     \section{Results and Analysis}
213     \label{sec:results}
214    
215     \subsection{Dipolar Ordering and Coexistence Temperatures}
216     The principal method for observing the orientational ordering
217     transition in dipolar systems is the $P_2$ order parameter (defined as
218     $1.5 \times \lambda_{max}$, where $\lambda_{max}$ is the largest
219     eigenvalue of the matrix,
220     \begin{equation}
221     {\mathsf{S}} = \frac{1}{N} \sum_i \left(
222     \begin{array}{ccc}
223     u^{x}_i u^{x}_i-\frac{1}{3} & u^{x}_i u^{y}_i & u^{x}_i u^{z}_i \\
224     u^{y}_i u^{x}_i & u^{y}_i u^{y}_i -\frac{1}{3} & u^{y}_i u^{z}_i \\
225     u^{z}_i u^{x}_i & u^{z}_i u^{y}_i & u^{z}_i u^{z}_i -\frac{1}{3}
226     \end{array} \right).
227     \label{eq:opmatrix}
228     \end{equation}
229     Here $u^{\alpha}_i$ is the $\alpha=x,y,z$ component of the unit vector
230     for dipole $i$. $P_2$ will be $1.0$ for a perfectly-ordered system
231     and near $0$ for a randomized system. Note that this order parameter
232     is {\em not} equal to the polarization of the system. For example,
233     the polarization of the perfect anti-ferroelectric system is $0$, but
234     $P_2$ for an anti-ferroelectric system is $1$. The eigenvector of
235     $\mathsf{S}$ corresponding to the largest eigenvalue is familiar as
236     the director axis, which can be used to determine a privileged dipolar
237     axis for dipole-ordered systems. The top panel in Fig. \ref{phase}
238     shows the values of $P_2$ as a function of temperature for both
239     triangular ($\gamma = 1.732$) and distorted ($\gamma=1.875$)
240     lattices.
241    
242     \begin{figure}
243     \includegraphics[width=\linewidth]{EX10099_fig1}
244     \caption{\label{phase} Top panel: The $P_2$ dipolar order parameter as
245     a function of temperature for both triangular ($\gamma = 1.732$) and
246     distorted ($\gamma = 1.875$) lattices. Bottom Panel: The phase
247     diagram for the dipolar membrane model. The line denotes the division
248     between the dipolar ordered (anti-ferroelectric) and disordered phases.
249     An enlarged view near the triangular lattice is shown inset.}
250     \end{figure}
251    
252     There is a clear order-disorder transition in evidence from this data.
253     Both the triangular and distorted lattices have dipolar-ordered
254     low-temperature phases, and orientationally-disordered high
255     temperature phases. The coexistence temperature for the triangular
256     lattice is significantly lower than for the distorted lattices, and
257     the bulk polarization is approximately $0$ for both dipolar ordered
258     and disordered phases. This gives strong evidence that the dipolar
259     ordered phase is anti-ferroelectric. We have verified that this
260     dipolar ordering transition is not a function of system size by
261     performing identical calculations with systems twice as large. The
262     transition is equally smooth at all system sizes that were studied.
263     Additionally, we have repeated the Monte Carlo simulations over a wide
264     range of lattice ratios ($\gamma$) to generate a dipolar
265     order/disorder phase diagram. The bottom panel in Fig. \ref{phase}
266     shows that the triangular lattice is a low-temperature cusp in the
267     $T^{*}-\gamma$ phase diagram.
268    
269     This phase diagram is remarkable in that it shows an
270     anti-ferroelectric phase near $\gamma=1.732$ where one would expect
271     lattice frustration to result in disordered phases at all
272     temperatures. Observations of the configurations in this phase show
273     clearly that the system has accomplished dipolar ordering by forming
274     large ripple-like structures. We have observed anti-ferroelectric
275     ordering in all three of the equivalent directions on the triangular
276     lattice, and the dipoles have been observed to organize perpendicular
277     to the membrane normal (in the plane of the membrane). It is
278     particularly interesting to note that the ripple-like structures have
279     also been observed to propagate in the three equivalent directions on
280     the lattice, but the {\em direction of ripple propagation is always
281     perpendicular to the dipole director axis}. A snapshot of a typical
282     anti-ferroelectric rippled structure is shown in
283     Fig. \ref{fig:snapshot}.
284    
285     \begin{figure}
286     \includegraphics[width=\linewidth]{EX10099_fig2}
287     \caption{\label{fig:snapshot} Top and Side views of a representative
288     configuration for the dipolar ordered phase supported on the
289     triangular lattice. Note the anti-ferroelectric ordering and the long
290     wavelength buckling of the membrane. Dipolar ordering has been
291     observed in all three equivalent directions on the triangular lattice,
292     and the ripple direction is always perpendicular to the director axis
293     for the dipoles.}
294     \end{figure}
295    
296     Although the snapshot in Fig. \ref{fig:snapshot} gives the appearance
297     of three-row stair-like structures, these appear to be transient. On
298     average, the corrugation of the membrane is a relatively smooth,
299     long-wavelength phenomenon, with occasional steep drops between
300     adjacent lines of anti-aligned dipoles.
301    
302     The height-dipole correlation function ($C_{\textrm{hd}}(r, \cos
303     \theta)$) makes the connection between dipolar ordering and the wave
304     vector of the ripple even more explicit. $C_{\textrm{hd}}(r, \cos
305     \theta)$ is an angle-dependent pair distribution function. The angle
306     ($\theta$) is the angle between the intermolecular vector
307     $\vec{r}_{ij}$ and direction of dipole $i$,
308     \begin{equation}
309     C_{\textrm{hd}} = \frac{\langle \frac{1}{n(r)} \sum_{i}\sum_{j>i}
310     h_i \cdot h_j \delta(r - r_{ij}) \delta(\cos \theta_{ij} -
311     \cos \theta)\rangle} {\langle h^2 \rangle}
312     \end{equation}
313     where $\cos \theta_{ij} = \hat{\mu}_{i} \cdot \hat{r}_{ij}$ and
314     $\hat{r}_{ij} = \vec{r}_{ij} / r_{ij}$. $n(r)$ is the number of
315     dipoles found in a cylindrical shell between $r$ and $r+\delta r$ of
316     the central particle. Fig. \ref{fig:CrossCorrelation} shows contours
317     of this correlation function for both anti-ferroelectric, rippled
318     membranes as well as for the dipole-disordered portion of the phase
319     diagram.
320    
321     \begin{figure}
322     \includegraphics[width=\linewidth]{EX10099_fig3}
323     \caption{\label{fig:CrossCorrelation} Contours of the height-dipole
324     correlation function as a function of the dot product between the
325     dipole ($\hat{\mu}$) and inter-dipole separation vector ($\hat{r}$)
326     and the distance ($r$) between the dipoles. Perfect height
327     correlation (contours approaching 1) are present in the ordered phase
328     when the two dipoles are in the same head-to-tail line.
329     Anti-correlation (contours below 0) is only seen when the inter-dipole
330     vector is perpendicular to the dipoles. In the dipole-disordered
331     portion of the phase diagram, there is only weak correlation in the
332     dipole direction and this correlation decays rapidly to zero for
333     intermolecular vectors that are not dipole-aligned.}
334     \end{figure}
335    
336     The height-dipole correlation function gives a map of how the topology
337     of the membrane surface varies with angular deviation around a given
338     dipole. The upper panel of Fig. \ref{fig:CrossCorrelation} shows that
339     in the anti-ferroelectric phase, the dipole heights are strongly
340     correlated for dipoles in head-to-tail arrangements, and this
341     correlation persists for very long distances (up to 15 $\sigma$). For
342     portions of the membrane located perpendicular to a given dipole, the
343     membrane height becomes anti-correlated at distances of 10 $\sigma$.
344     The correlation function is relatively smooth; there are no steep
345     jumps or steps, so the stair-like structures in
346     Fig. \ref{fig:snapshot} are indeed transient and disappear when
347     averaged over many configurations. In the dipole-disordered phase,
348     the height-dipole correlation function is relatively flat (and hovers
349     near zero). The only significant height correlations are for axial
350     dipoles at very short distances ($r \approx
351     \sigma$).
352    
353     \subsection{Discriminating Ripples from Thermal Undulations}
354    
355     In order to be sure that the structures we have observed are actually
356     a rippled phase and not simply thermal undulations, we have computed
357     the undulation spectrum,
358     \begin{equation}
359     h(\vec{q}) = A^{-1/2} \int d\vec{r}
360     h(\vec{r}) e^{-i \vec{q}\cdot\vec{r}}
361     \end{equation}
362     where $h(\vec{r})$ is the height of the membrane at location $\vec{r}
363     = (x,y)$.~\cite{Safran94,Seifert97} In simple (and more complicated)
364     elastic continuum models, it can shown that in the $NVT$ ensemble, the
365     absolute value of the undulation spectrum can be written,
366     \begin{equation}
367     \langle | h(q) |^2 \rangle_{NVT} = \frac{k_B T}{k_c q^4 +
368     \gamma q^2},
369     \label{eq:fit}
370     \end{equation}
371     where $k_c$ is the bending modulus for the membrane, and $\gamma$ is
372     the mechanical surface tension.~\cite{Safran94} The systems studied in
373     this paper have essentially zero bending moduli ($k_c$) and relatively
374     large mechanical surface tensions ($\gamma$), so a much simpler form
375     can be written,
376     \begin{equation}
377     \langle | h(q) |^2 \rangle_{NVT} = \frac{k_B T}{\gamma q^2},
378     \label{eq:fit2}
379     \end{equation}
380    
381     The undulation spectrum is computed by superimposing a rectangular
382     grid on top of the membrane, and by assigning height ($h(\vec{r})$)
383     values to the grid from the average of all dipoles that fall within a
384     given $\vec{r}+d\vec{r}$ grid area. Empty grid pixels are assigned
385     height values by interpolation from the nearest neighbor pixels. A
386     standard 2-d Fourier transform is then used to obtain $\langle |
387     h(q)|^2 \rangle$. Alternatively, since the dipoles sit on a Bravais
388     lattice, one could use the heights of the lattice points themselves as
389     the grid for the Fourier transform (without interpolating to a square
390     grid). However, if lateral translational freedom is added to this
391     model (a likely extension), an interpolated grid method for computing
392     undulation spectra will be required.
393    
394     As mentioned above, the best fits to our undulation spectra are
395     obtained by setting the value of $k_c$ to 0. In Fig. \ref{fig:fit} we
396     show typical undulation spectra for two different regions of the phase
397     diagram along with their fits from the Landau free energy approach
398     (Eq. \ref{eq:fit2}). In the high-temperature disordered phase, the
399     Landau fits can be nearly perfect, and from these fits we can estimate
400     the tension in the surface. In reduced units, typical values of
401     $\gamma^{*} = \gamma / \epsilon = 2500$ are obtained for the
402     disordered phase ($\gamma^{*} = 2551.7$ in the top panel of
403     Fig. \ref{fig:fit}).
404    
405     Typical values of $\gamma^{*}$ in the dipolar-ordered phase are much
406     higher than in the dipolar-disordered phase ($\gamma^{*} = 73,538$ in
407     the lower panel of Fig. \ref{fig:fit}). For the dipolar-ordered
408     triangular lattice near the coexistence temperature, we also observe
409     long wavelength undulations that are far outliers to the fits. That
410     is, the Landau free energy fits are well within error bars for most of
411     the other points, but can be off by {\em orders of magnitude} for a
412     few low frequency components.
413    
414     We interpret these outliers as evidence that these low frequency modes
415     are {\em non-thermal undulations}. We take this as evidence that we
416     are actually seeing a rippled phase developing in this model system.
417    
418     \begin{figure}
419     \includegraphics[width=\linewidth]{EX10099_fig4}
420     \caption{\label{fig:fit} Evidence that the observed ripples are {\em
421     not} thermal undulations is obtained from the 2-d Fourier transform
422     $\langle |h^{*}(\vec{q})|^2 \rangle$ of the height profile ($\langle
423     h^{*}(x,y) \rangle$). Rippled samples show low-wavelength peaks that
424     are outliers on the Landau free energy fits by an order of magnitude.
425     Samples exhibiting only thermal undulations fit Eq. \ref{eq:fit}
426     remarkably well.}
427     \end{figure}
428    
429     \subsection{Effects of Potential Parameters on Amplitude and Wavelength}
430    
431     We have used two different methods to estimate the amplitude and
432     periodicity of the ripples. The first method requires projection of
433     the ripples onto a one dimensional rippling axis. Since the rippling
434     is always perpendicular to the dipole director axis, we can define a
435     ripple vector as follows. The largest eigenvector, $s_1$, of the
436     $\mathsf{S}$ matrix in Eq. \ref{eq:opmatrix} is projected onto a
437     planar director axis,
438     \begin{equation}
439     \vec{d} = \left(\begin{array}{c}
440     \vec{s}_1 \cdot \hat{i} \\
441     \vec{s}_1 \cdot \hat{j} \\
442     0
443     \end{array} \right).
444     \end{equation}
445     ($\hat{i}$, $\hat{j}$ and $\hat{k}$ are unit vectors along the $x$,
446     $y$, and $z$ axes, respectively.) The rippling axis is in the plane of
447     the membrane and is perpendicular to the planar director axis,
448     \begin{equation}
449     \vec{q}_{\mathrm{rip}} = \vec{d} \times \hat{k}
450     \end{equation}
451     We can then find the height profile of the membrane along the ripple
452     axis by projecting heights of the dipoles to obtain a one-dimensional
453     height profile, $h(q_{\mathrm{rip}})$. Ripple wavelengths can be
454     estimated from the largest non-thermal low-frequency component in the
455     Fourier transform of $h(q_{\mathrm{rip}})$. Amplitudes can be
456     estimated by measuring peak-to-trough distances in
457     $h(q_{\mathrm{rip}})$ itself.
458    
459     A second, more accurate, and simpler method for estimating ripple
460     shape is to extract the wavelength and height information directly
461     from the largest non-thermal peak in the undulation spectrum. For
462     large-amplitude ripples, the two methods give similar results. The
463     one-dimensional projection method is more prone to noise (particularly
464     in the amplitude estimates for the distorted lattices). We report
465     amplitudes and wavelengths taken directly from the undulation spectrum
466     below.
467    
468     In the triangular lattice ($\gamma = \sqrt{3}$), the rippling is
469     observed for temperatures ($T^{*}$) from $61-122$. The wavelength of
470     the ripples is remarkably stable at 21.4~$\sigma$ for all but the
471     temperatures closest to the order-disorder transition. At $T^{*} =
472     122$, the wavelength drops to 17.1~$\sigma$.
473    
474     The dependence of the amplitude on temperature is shown in the top
475     panel of Fig. \ref{fig:Amplitude}. The rippled structures shrink
476     smoothly as the temperature rises towards the order-disorder
477     transition. The wavelengths and amplitudes we observe are
478     surprisingly close to the $\Lambda / 2$ phase observed by Kaasgaard
479     {\it et al.} in their work on PC-based lipids.\cite{Kaasgaard03}
480     However, this is coincidental agreement based on a choice of 7~\AA~as
481     the mean spacing between lipids.
482    
483     \begin{figure}
484     \includegraphics[width=\linewidth]{EX10099_fig5}
485     \caption{\label{fig:Amplitude} a) The amplitude $A^{*}$ of the ripples
486     vs. temperature for a triangular lattice. b) The amplitude $A^{*}$ of
487     the ripples vs. dipole strength ($\mu^{*}$) for both the triangular
488     lattice (circles) and distorted lattice (squares). The reduced
489     temperatures were kept fixed at $T^{*} = 94$ for the triangular
490     lattice and $T^{*} = 106$ for the distorted lattice (approximately 2/3
491     of the order-disorder transition temperature for each lattice).}
492     \end{figure}
493    
494     The ripples can be made to disappear by increasing the internal
495     elastic tension (i.e. by increasing $k_r$ or equivalently, reducing
496     the dipole moment). The amplitude of the ripples depends critically
497     on the strength of the dipole moments ($\mu^{*}$) in Eq. \ref{eq:pot}.
498     If the dipoles are weakened substantially (below $\mu^{*}$ = 20) at a
499     fixed temperature of 94, the membrane loses dipolar ordering
500     and the ripple structures. The ripples reach a peak amplitude of
501     3.7~$\sigma$ at a dipolar strength of 25. We show the dependence
502     of ripple amplitude on the dipolar strength in
503     Fig. \ref{fig:Amplitude}.
504    
505     \subsection{Distorted lattices}
506    
507     We have also investigated the effect of the lattice geometry by
508     changing the ratio of lattice constants ($\gamma$) while keeping the
509     average nearest-neighbor spacing constant. The anti-ferroelectric state
510     is accessible for all $\gamma$ values we have used, although the
511     distorted triangular lattices prefer a particular director axis due to
512     the anisotropy of the lattice.
513    
514     Our observation of rippling behavior was not limited to the triangular
515     lattices. In distorted lattices the anti-ferroelectric phase can
516     develop nearly instantaneously in the Monte Carlo simulations, and
517     these dipolar-ordered phases tend to be remarkably flat. Whenever
518     rippling has been observed in these distorted lattices
519     (e.g. $\gamma = 1.875$), we see relatively short ripple wavelengths
520     (14 $\sigma$) and amplitudes of 2.4~$\sigma$. These ripples are
521     weakly dependent on dipolar strength (see Fig. \ref{fig:Amplitude}),
522     although below a dipolar strength of $\mu^{*} = 20$, the membrane
523     loses dipolar ordering and displays only thermal undulations.
524    
525     The ripple phase does {\em not} appear at all values of $\gamma$. We
526     have only observed non-thermal undulations in the range $1.625 <
527     \gamma < 1.875$. Outside this range, the order-disorder transition in
528     the dipoles remains, but the ordered dipolar phase has only thermal
529     undulations. This is one of our strongest pieces of evidence that
530     rippling is a symmetry-breaking phenomenon for triangular and
531     nearly-triangular lattices.
532    
533     \subsection{Effects of System Size}
534     To evaluate the effect of finite system size, we have performed a
535     series of simulations on the triangular lattice at a reduced
536     temperature of 122, which is just below the order-disorder transition
537     temperature ($T^{*} = 139$). These conditions are in the
538     dipole-ordered and rippled portion of the phase diagram. These are
539     also the conditions that should be most susceptible to system size
540     effects.
541    
542     \begin{figure}
543     \includegraphics[width=\linewidth]{EX10099_fig6}
544     \caption{\label{fig:systemsize} The ripple wavelength (top) and
545     amplitude (bottom) as a function of system size for a triangular
546     lattice ($\gamma=1.732$) at $T^{*} = 122$.}
547     \end{figure}
548    
549     There is substantial dependence on system size for small (less than
550     29~$\sigma$) periodic boxes. Notably, there are resonances apparent
551     in the ripple amplitudes at box lengths of 17.3 and 29.5 $\sigma$.
552     For larger systems, the behavior of the ripples appears to have
553     stabilized and is on a trend to slightly smaller amplitudes (and
554     slightly longer wavelengths) than were observed from the 34.3 $\sigma$
555     box sizes that were used for most of the calculations.
556    
557     It is interesting to note that system sizes which are multiples of the
558     default ripple wavelength can enhance the amplitude of the observed
559     ripples, but appears to have only a minor effect on the observed
560     wavelength. It would, of course, be better to use system sizes that
561     were many multiples of the ripple wavelength to be sure that the
562     periodic box is not driving the phenomenon, but at the largest system
563     size studied (70 $\sigma$ $\times$ 70 $\sigma$), the number of dipoles
564     (5440) made long Monte Carlo simulations prohibitively expensive.
565    
566     \section{Discussion}
567     \label{sec:discussion}
568    
569     We have been able to show that a simple dipolar lattice model which
570     contains only molecular packing (from the lattice), anisotropy (in the
571     form of electrostatic dipoles) and a weak elastic tension (in the form
572     of a nearest-neighbor harmonic potential) is capable of exhibiting
573     stable long-wavelength non-thermal surface corrugations. The best
574     explanation for this behavior is that the ability of the dipoles to
575     translate out of the plane of the membrane is enough to break the
576     symmetry of the triangular lattice and allow the energetic benefit
577     from the formation of a bulk anti-ferroelectric phase. Were the weak
578     elastic tension absent from our model, it would be possible for the
579     entire lattice to ``tilt'' using $z$-translation. Tilting the lattice
580     in this way would yield an effectively non-triangular lattice which
581     would avoid dipolar frustration altogether. With the elastic tension
582     in place, bulk tilt causes a large strain, and the least costly way to
583     release this strain is between two rows of anti-aligned dipoles.
584     These ``breaks'' will result in rippled or sawtooth patterns in the
585     membrane, and allow small stripes of membrane to form
586     anti-ferroelectric regions that are tilted relative to the averaged
587     membrane normal.
588    
589     Although the dipole-dipole interaction is the major driving force for
590     the long range orientational ordered state, the formation of the
591     stable, smooth ripples is a result of the competition between the
592     elastic tension and the dipole-dipole interactions. This statement is
593     supported by the variation in $\mu^{*}$. Substantially weaker dipoles
594     relative to the surface tension can cause the corrugated phase to
595     disappear.
596    
597     The packing of the dipoles into a nearly-triangular lattice is clearly
598     an important piece of the puzzle. The dipolar head groups of lipid
599     molecules are sterically (as well as electrostatically) anisotropic,
600     and would not pack in triangular arrangements without the steric
601     interference of adjacent molecular bodies. Since we only see rippled
602     phases in the neighborhood of $\gamma=\sqrt{3}$, this implies that
603     even if this dipolar mechanism is the correct explanation for the
604     ripple phase in realistic bilayers, there would still be a role played
605     by the lipid chains in the in-plane organization of the triangularly
606     ordered phases which could support ripples. The present model is
607     certainly not detailed enough to answer exactly what drives the
608     formation of the $P_{\beta'}$ phase in real lipids, but suggests some
609     avenues for further experiments.
610    
611     The most important prediction we can make using the results from this
612     simple model is that if dipolar ordering is driving the surface
613     corrugation, the wave vectors for the ripples should always found to
614     be {\it perpendicular} to the dipole director axis. This prediction
615     should suggest experimental designs which test whether this is really
616     true in the phosphatidylcholine $P_{\beta'}$ phases. The dipole
617     director axis should also be easily computable for the all-atom and
618     coarse-grained simulations that have been published in the literature.
619    
620     Our other observation about the ripple and dipolar directionality is
621     that the dipole director axis can be found to be parallel to any of
622     the three equivalent lattice vectors in the triangular lattice.
623     Defects in the ordering of the dipoles can cause the dipole director
624     (and consequently the surface corrugation) of small regions to be
625     rotated relative to each other by 120$^{\circ}$. This is a similar
626     behavior to the domain rotation seen in the AFM studies of Kaasgaard
627     {\it et al.}\cite{Kaasgaard03}
628    
629     Although our model is simple, it exhibits some rich and unexpected
630     behaviors. It would clearly be a closer approximation to the reality
631     if we allowed greater translational freedom to the dipoles and
632     replaced the somewhat artificial lattice packing and the harmonic
633     elastic tension with more realistic molecular modeling potentials.
634     What we have done is to present a simple model which exhibits bulk
635     non-thermal corrugation, and our explanation of this rippling
636     phenomenon will help us design more accurate molecular models for
637     corrugated membranes and experiments to test whether rippling is
638     dipole-driven or not.
639    
640     \begin{acknowledgments}
641     Support for this project was provided by the National Science
642     Foundation under grant CHE-0134881. The authors would like to thank
643     the reviewers for helpful comments.
644     \end{acknowledgments}
645    
646     %\bibliography{EX10099}
647     \begin{thebibliography}{41}
648     \expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi
649     \expandafter\ifx\csname bibnamefont\endcsname\relax
650     \def\bibnamefont#1{#1}\fi
651     \expandafter\ifx\csname bibfnamefont\endcsname\relax
652     \def\bibfnamefont#1{#1}\fi
653     \expandafter\ifx\csname citenamefont\endcsname\relax
654     \def\citenamefont#1{#1}\fi
655     \expandafter\ifx\csname url\endcsname\relax
656     \def\url#1{\texttt{#1}}\fi
657     \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi
658     \providecommand{\bibinfo}[2]{#2}
659     \providecommand{\eprint}[2][]{\url{#2}}
660    
661     \bibitem[{\citenamefont{Safran}(1994)}]{Safran94}
662     \bibinfo{author}{\bibfnamefont{S.~A.} \bibnamefont{Safran}},
663     \emph{\bibinfo{title}{Statistical Thermodynamics of Surfaces, Interfaces, and
664     Membranes}} (\bibinfo{publisher}{Addison-Wesley}, \bibinfo{address}{Reading,
665     MA}, \bibinfo{year}{1994}).
666    
667     \bibitem[{\citenamefont{Seung and Nelson}(1988)}]{Seung1988}
668     \bibinfo{author}{\bibfnamefont{H.~S.} \bibnamefont{Seung}} \bibnamefont{and}
669     \bibinfo{author}{\bibfnamefont{D.~R.} \bibnamefont{Nelson}},
670     \bibinfo{journal}{Phys. Rev. A} \textbf{\bibinfo{volume}{38}},
671     \bibinfo{pages}{1005} (\bibinfo{year}{1988}).
672    
673     \bibitem[{\citenamefont{Carraro and Nelson}(1993)}]{Carraro1993}
674     \bibinfo{author}{\bibfnamefont{C.}~\bibnamefont{Carraro}} \bibnamefont{and}
675     \bibinfo{author}{\bibfnamefont{D.~R.} \bibnamefont{Nelson}},
676     \bibinfo{journal}{Phys. Rev. E} \textbf{\bibinfo{volume}{48}},
677     \bibinfo{pages}{3082} (\bibinfo{year}{1993}).
678    
679     \bibitem[{\citenamefont{Mutz et~al.}(1991)\citenamefont{Mutz, Bensimon, and
680     Brienne}}]{Mutz1991}
681     \bibinfo{author}{\bibfnamefont{M.}~\bibnamefont{Mutz}},
682     \bibinfo{author}{\bibfnamefont{D.}~\bibnamefont{Bensimon}}, \bibnamefont{and}
683     \bibinfo{author}{\bibfnamefont{M.~J.} \bibnamefont{Brienne}},
684     \bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{67}},
685     \bibinfo{pages}{923} (\bibinfo{year}{1991}).
686    
687     \bibitem[{\citenamefont{Sun et~al.}(1996)\citenamefont{Sun, Tristram-Nagle,
688     Suter, and Nagle}}]{Sun96}
689     \bibinfo{author}{\bibfnamefont{W.~J.} \bibnamefont{Sun}},
690     \bibinfo{author}{\bibfnamefont{S.}~\bibnamefont{Tristram-Nagle}},
691     \bibinfo{author}{\bibfnamefont{R.~M.} \bibnamefont{Suter}}, \bibnamefont{and}
692     \bibinfo{author}{\bibfnamefont{J.~F.} \bibnamefont{Nagle}},
693     \bibinfo{journal}{Proc. Natl. Acad. Sci. USA} \textbf{\bibinfo{volume}{93}},
694     \bibinfo{pages}{7008} (\bibinfo{year}{1996}).
695    
696     \bibitem[{\citenamefont{Katsaras et~al.}(2000)\citenamefont{Katsaras,
697     Tristram-Nagle, Liu, Headrick, E.Fontes, Mason, and Nagle}}]{Katsaras00}
698     \bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{Katsaras}},
699     \bibinfo{author}{\bibfnamefont{S.}~\bibnamefont{Tristram-Nagle}},
700     \bibinfo{author}{\bibfnamefont{Y.}~\bibnamefont{Liu}},
701     \bibinfo{author}{\bibfnamefont{R.~L.} \bibnamefont{Headrick}},
702     \bibinfo{author}{\bibnamefont{E.Fontes}},
703     \bibinfo{author}{\bibfnamefont{P.~C.} \bibnamefont{Mason}}, \bibnamefont{and}
704     \bibinfo{author}{\bibfnamefont{J.~F.} \bibnamefont{Nagle}},
705     \bibinfo{journal}{Phys. Rev. E} \textbf{\bibinfo{volume}{61}},
706     \bibinfo{pages}{5668} (\bibinfo{year}{2000}).
707    
708     \bibitem[{\citenamefont{Copeland and McConnell}(1980)}]{Copeland80}
709     \bibinfo{author}{\bibfnamefont{B.~R.} \bibnamefont{Copeland}} \bibnamefont{and}
710     \bibinfo{author}{\bibfnamefont{H.~M.} \bibnamefont{McConnell}},
711     \bibinfo{journal}{Biochim. Biophys. Acta.} \textbf{\bibinfo{volume}{599}},
712     \bibinfo{pages}{95} (\bibinfo{year}{1980}).
713    
714     \bibitem[{\citenamefont{Meyer}(1996)}]{Meyer96}
715     \bibinfo{author}{\bibfnamefont{H.~W.} \bibnamefont{Meyer}},
716     \bibinfo{journal}{Biochim. Biophys. Acta.} \textbf{\bibinfo{volume}{1302}},
717     \bibinfo{pages}{221} (\bibinfo{year}{1996}).
718    
719     \bibitem[{\citenamefont{Kaasgaard et~al.}(2003)\citenamefont{Kaasgaard, Leidy,
720     Crowe, Mouritsen, and rgensen}}]{Kaasgaard03}
721     \bibinfo{author}{\bibfnamefont{T.}~\bibnamefont{Kaasgaard}},
722     \bibinfo{author}{\bibfnamefont{C.}~\bibnamefont{Leidy}},
723     \bibinfo{author}{\bibfnamefont{J.~H.} \bibnamefont{Crowe}},
724     \bibinfo{author}{\bibfnamefont{O.~G.} \bibnamefont{Mouritsen}},
725     \bibnamefont{and} \bibinfo{author}{\bibfnamefont{K.~J.}
726     \bibnamefont{rgensen}}, \bibinfo{journal}{Biophys. J.}
727     \textbf{\bibinfo{volume}{85}}, \bibinfo{pages}{350} (\bibinfo{year}{2003}).
728    
729     \bibitem[{\citenamefont{Cevc and Marsh}(1980)}]{Cevc87}
730     \bibinfo{author}{\bibfnamefont{G.}~\bibnamefont{Cevc}} \bibnamefont{and}
731     \bibinfo{author}{\bibfnamefont{D.}~\bibnamefont{Marsh}},
732     \emph{\bibinfo{title}{Phospholipid Bilayers}}
733     (\bibinfo{publisher}{Wiley-Interscience}, \bibinfo{address}{New York},
734     \bibinfo{year}{1980}).
735    
736     \bibitem[{\citenamefont{Marder et~al.}(1984)\citenamefont{Marder, Frisch,
737     Langer, and McConnell}}]{Marder84}
738     \bibinfo{author}{\bibfnamefont{M.}~\bibnamefont{Marder}},
739     \bibinfo{author}{\bibfnamefont{H.~L.} \bibnamefont{Frisch}},
740     \bibinfo{author}{\bibfnamefont{J.~S.} \bibnamefont{Langer}},
741     \bibnamefont{and} \bibinfo{author}{\bibfnamefont{H.~M.}
742     \bibnamefont{McConnell}}, \bibinfo{journal}{Proc. Natl. Acad. Sci. USA}
743     \textbf{\bibinfo{volume}{81}}, \bibinfo{pages}{6559} (\bibinfo{year}{1984}).
744    
745     \bibitem[{\citenamefont{Goldstein and Leibler}(1988)}]{Goldstein88}
746     \bibinfo{author}{\bibfnamefont{R.~E.} \bibnamefont{Goldstein}}
747     \bibnamefont{and} \bibinfo{author}{\bibfnamefont{S.}~\bibnamefont{Leibler}},
748     \bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{61}},
749     \bibinfo{pages}{2213} (\bibinfo{year}{1988}).
750    
751     \bibitem[{\citenamefont{McCullough and Scott}(1990)}]{McCullough90}
752     \bibinfo{author}{\bibfnamefont{W.~S.} \bibnamefont{McCullough}}
753     \bibnamefont{and} \bibinfo{author}{\bibfnamefont{H.~L.} \bibnamefont{Scott}},
754     \bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{65}},
755     \bibinfo{pages}{931} (\bibinfo{year}{1990}).
756    
757     \bibitem[{\citenamefont{Lubensky and MacKintosh}(1993)}]{Lubensky93}
758     \bibinfo{author}{\bibfnamefont{T.~C.} \bibnamefont{Lubensky}} \bibnamefont{and}
759     \bibinfo{author}{\bibfnamefont{F.~C.} \bibnamefont{MacKintosh}},
760     \bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{71}},
761     \bibinfo{pages}{1565} (\bibinfo{year}{1993}).
762    
763     \bibitem[{\citenamefont{Misbah et~al.}(1998)\citenamefont{Misbah, Duplat, and
764     Houchmandzadeh}}]{Misbah98}
765     \bibinfo{author}{\bibfnamefont{C.}~\bibnamefont{Misbah}},
766     \bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{Duplat}}, \bibnamefont{and}
767     \bibinfo{author}{\bibfnamefont{B.}~\bibnamefont{Houchmandzadeh}},
768     \bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{80}},
769     \bibinfo{pages}{4598} (\bibinfo{year}{1998}).
770    
771     \bibitem[{\citenamefont{Heimburg}(2000)}]{Heimburg00}
772     \bibinfo{author}{\bibfnamefont{T.}~\bibnamefont{Heimburg}},
773     \bibinfo{journal}{Biophys. J.} \textbf{\bibinfo{volume}{78}},
774     \bibinfo{pages}{1154} (\bibinfo{year}{2000}).
775    
776     \bibitem[{\citenamefont{Kubica}(2002)}]{Kubica02}
777     \bibinfo{author}{\bibfnamefont{K.}~\bibnamefont{Kubica}},
778     \bibinfo{journal}{Computers and Chemistry} \textbf{\bibinfo{volume}{26}},
779     \bibinfo{pages}{351} (\bibinfo{year}{2002}).
780    
781     \bibitem[{\citenamefont{Bannerjee}(2002)}]{Bannerjee02}
782     \bibinfo{author}{\bibfnamefont{S.}~\bibnamefont{Bannerjee}},
783     \bibinfo{journal}{Physica A} \textbf{\bibinfo{volume}{308}},
784     \bibinfo{pages}{89} (\bibinfo{year}{2002}).
785    
786     \bibitem[{\citenamefont{Ayton and Voth}(2002)}]{Ayton02}
787     \bibinfo{author}{\bibfnamefont{G.}~\bibnamefont{Ayton}} \bibnamefont{and}
788     \bibinfo{author}{\bibfnamefont{G.~A.} \bibnamefont{Voth}},
789     \bibinfo{journal}{Biophys. J.} \textbf{\bibinfo{volume}{83}},
790     \bibinfo{pages}{3357} (\bibinfo{year}{2002}).
791    
792     \bibitem[{\citenamefont{Jiang et~al.}(2004)\citenamefont{Jiang, Bouret, and
793     Kindt}}]{Jiang04}
794     \bibinfo{author}{\bibfnamefont{F.~Y.} \bibnamefont{Jiang}},
795     \bibinfo{author}{\bibfnamefont{Y.}~\bibnamefont{Bouret}}, \bibnamefont{and}
796     \bibinfo{author}{\bibfnamefont{J.~T.} \bibnamefont{Kindt}},
797     \bibinfo{journal}{Biophys. J.} \textbf{\bibinfo{volume}{87}},
798     \bibinfo{pages}{182} (\bibinfo{year}{2004}).
799    
800     \bibitem[{\citenamefont{Brannigan and Brown}(2004)}]{Brannigan04a}
801     \bibinfo{author}{\bibfnamefont{G.}~\bibnamefont{Brannigan}} \bibnamefont{and}
802     \bibinfo{author}{\bibfnamefont{F.~L.~H.} \bibnamefont{Brown}},
803     \bibinfo{journal}{J. Chem. Phys.} \textbf{\bibinfo{volume}{120}},
804     \bibinfo{pages}{1059} (\bibinfo{year}{2004}).
805    
806     \bibitem[{\citenamefont{de~Vries et~al.}(2005)\citenamefont{de~Vries, Yefimov,
807     Mark, and Marrink}}]{deVries05}
808     \bibinfo{author}{\bibfnamefont{A.~H.} \bibnamefont{de~Vries}},
809     \bibinfo{author}{\bibfnamefont{S.}~\bibnamefont{Yefimov}},
810     \bibinfo{author}{\bibfnamefont{A.~E.} \bibnamefont{Mark}}, \bibnamefont{and}
811     \bibinfo{author}{\bibfnamefont{S.~J.} \bibnamefont{Marrink}},
812     \bibinfo{journal}{Proc. Natl. Acad. Sci. USA} \textbf{\bibinfo{volume}{102}},
813     \bibinfo{pages}{5392} (\bibinfo{year}{2005}).
814    
815     \bibitem[{\citenamefont{de~Joannis et~al.}(2006)\citenamefont{de~Joannis,
816     Jiang, and Kindt}}]{deJoannis06}
817     \bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{de~Joannis}},
818     \bibinfo{author}{\bibfnamefont{F.~Y.} \bibnamefont{Jiang}}, \bibnamefont{and}
819     \bibinfo{author}{\bibfnamefont{J.~T.} \bibnamefont{Kindt}},
820     \bibinfo{journal}{Langmuir} \textbf{\bibinfo{volume}{22}},
821     \bibinfo{pages}{998} (\bibinfo{year}{2006}).
822    
823     \bibitem[{\citenamefont{Todorova et~al.}(2004)\citenamefont{Todorova, Angelov,
824     Marinov, and Petrov}}]{Todorova2004}
825     \bibinfo{author}{\bibfnamefont{L.}~\bibnamefont{Todorova}},
826     \bibinfo{author}{\bibfnamefont{T.}~\bibnamefont{Angelov}},
827     \bibinfo{author}{\bibfnamefont{Y.}~\bibnamefont{Marinov}}, \bibnamefont{and}
828     \bibinfo{author}{\bibfnamefont{A.~G.} \bibnamefont{Petrov}},
829     \bibinfo{journal}{J. Mat. Sci. Mat. Elect.} \textbf{\bibinfo{volume}{14}},
830     \bibinfo{pages}{817} (\bibinfo{year}{2004}).
831    
832     \bibitem[{\citenamefont{Harden et~al.}(2006)\citenamefont{Harden, Mbanga, Eber,
833     Fodor-Csorba, Sprunt, Gleeson, and Jakli}}]{Harden2006}
834     \bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{Harden}},
835     \bibinfo{author}{\bibfnamefont{B.}~\bibnamefont{Mbanga}},
836     \bibinfo{author}{\bibfnamefont{N.}~\bibnamefont{Eber}},
837     \bibinfo{author}{\bibfnamefont{K.}~\bibnamefont{Fodor-Csorba}},
838     \bibinfo{author}{\bibfnamefont{S.}~\bibnamefont{Sprunt}},
839     \bibinfo{author}{\bibfnamefont{J.~T.} \bibnamefont{Gleeson}},
840     \bibnamefont{and} \bibinfo{author}{\bibfnamefont{A.}~\bibnamefont{Jakli}},
841     \bibinfo{journal}{Physical Review Letters} \textbf{\bibinfo{volume}{97}},
842     \bibinfo{eid}{157802} (pages~\bibinfo{numpages}{4}) (\bibinfo{year}{2006}).
843    
844     \bibitem[{\citenamefont{Petrov}(2006)}]{Petrov2006}
845     \bibinfo{author}{\bibfnamefont{A.~G.} \bibnamefont{Petrov}},
846     \bibinfo{journal}{Anal. Chim. Acta} pp. \bibinfo{pages}{70--83}
847     (\bibinfo{year}{2006}).
848    
849     \bibitem[{\citenamefont{Raphael et~al.}(2000)\citenamefont{Raphael, Popel, and
850     Brownell}}]{Raphael2000}
851     \bibinfo{author}{\bibfnamefont{R.~M.} \bibnamefont{Raphael}},
852     \bibinfo{author}{\bibfnamefont{A.~S.} \bibnamefont{Popel}}, \bibnamefont{and}
853     \bibinfo{author}{\bibfnamefont{W.~E.} \bibnamefont{Brownell}},
854     \bibinfo{journal}{Biophys. J.} \textbf{\bibinfo{volume}{78}},
855     \bibinfo{pages}{2844} (\bibinfo{year}{2000}).
856    
857     \bibitem[{\citenamefont{Toulouse}(1977)}]{Toulouse1977}
858     \bibinfo{author}{\bibfnamefont{G.}~\bibnamefont{Toulouse}},
859     \bibinfo{journal}{Commun. Phys.} \textbf{\bibinfo{volume}{2}},
860     \bibinfo{pages}{115} (\bibinfo{year}{1977}).
861    
862     \bibitem[{\citenamefont{Marland and Betts}(1979)}]{Marland1979}
863     \bibinfo{author}{\bibfnamefont{L.~G.} \bibnamefont{Marland}} \bibnamefont{and}
864     \bibinfo{author}{\bibfnamefont{D.~D.} \bibnamefont{Betts}},
865     \bibinfo{journal}{Phys. Rev. Lett.} \textbf{\bibinfo{volume}{43}},
866     \bibinfo{pages}{1618} (\bibinfo{year}{1979}).
867    
868     \bibitem[{\citenamefont{Renard and Garland}(1966)}]{Renard1966}
869     \bibinfo{author}{\bibfnamefont{R.}~\bibnamefont{Renard}} \bibnamefont{and}
870     \bibinfo{author}{\bibfnamefont{C.~W.} \bibnamefont{Garland}},
871     \bibinfo{journal}{J. Chem. Phys.} \textbf{\bibinfo{volume}{44}},
872     \bibinfo{pages}{1125} (\bibinfo{year}{1966}).
873    
874     \bibitem[{\citenamefont{Zhu et~al.}(2005)\citenamefont{Zhu, Tavazza, and
875     Landau}}]{Zhu2005}
876     \bibinfo{author}{\bibfnamefont{X.}~\bibnamefont{Zhu}},
877     \bibinfo{author}{\bibfnamefont{F.}~\bibnamefont{Tavazza}}, \bibnamefont{and}
878     \bibinfo{author}{\bibfnamefont{D.~P.} \bibnamefont{Landau}},
879     \bibinfo{journal}{Phys. Rev. B} \textbf{\bibinfo{volume}{72}},
880     \bibinfo{pages}{104102} (\bibinfo{year}{2005}).
881    
882     \bibitem[{\citenamefont{Zhu and Landau}(2006)}]{Zhu2006}
883     \bibinfo{author}{\bibfnamefont{X.}~\bibnamefont{Zhu}} \bibnamefont{and}
884     \bibinfo{author}{\bibfnamefont{D.~P.} \bibnamefont{Landau}},
885     \bibinfo{journal}{Phys. Rev. B} \textbf{\bibinfo{volume}{73}},
886     \bibinfo{pages}{064115} (\bibinfo{year}{2006}).
887    
888     \bibitem[{\citenamefont{Jiang and Emig}(2006)}]{Jiang2006}
889     \bibinfo{author}{\bibfnamefont{Y.}~\bibnamefont{Jiang}} \bibnamefont{and}
890     \bibinfo{author}{\bibfnamefont{T.}~\bibnamefont{Emig}},
891     \bibinfo{journal}{Phys. Rev. B} \textbf{\bibinfo{volume}{73}},
892     \bibinfo{pages}{104452} (\bibinfo{year}{2006}).
893    
894     \bibitem[{\citenamefont{Parry}(1975)}]{Parry75}
895     \bibinfo{author}{\bibfnamefont{D.~E.} \bibnamefont{Parry}},
896     \bibinfo{journal}{Surf. Sci.} \textbf{\bibinfo{volume}{49}},
897     \bibinfo{pages}{433} (\bibinfo{year}{1975}).
898    
899     \bibitem[{\citenamefont{Parry}(1976)}]{Parry76}
900     \bibinfo{author}{\bibfnamefont{D.~E.} \bibnamefont{Parry}},
901     \bibinfo{journal}{Surf. Sci.} \textbf{\bibinfo{volume}{54}},
902     \bibinfo{pages}{195} (\bibinfo{year}{1976}).
903    
904     \bibitem[{\citenamefont{Heyes et~al.}(1977)\citenamefont{Heyes, Barber, and
905     Clarke}}]{Heyes77}
906     \bibinfo{author}{\bibfnamefont{D.~M.} \bibnamefont{Heyes}},
907     \bibinfo{author}{\bibfnamefont{M.}~\bibnamefont{Barber}}, \bibnamefont{and}
908     \bibinfo{author}{\bibfnamefont{J.~H.~R.} \bibnamefont{Clarke}},
909     \bibinfo{journal}{J. Chem. Soc., Faraday Trans. II}
910     \textbf{\bibinfo{volume}{73}}, \bibinfo{pages}{1485} (\bibinfo{year}{1977}).
911    
912     \bibitem[{\citenamefont{{de Leeuw} and Perram}(1979)}]{deLeeuw79}
913     \bibinfo{author}{\bibfnamefont{S.~W.} \bibnamefont{{de Leeuw}}}
914     \bibnamefont{and} \bibinfo{author}{\bibfnamefont{J.~W.}
915     \bibnamefont{Perram}}, \bibinfo{journal}{Mol. Phys.}
916     \textbf{\bibinfo{volume}{37}}, \bibinfo{pages}{1313} (\bibinfo{year}{1979}).
917    
918     \bibitem[{\citenamefont{Rhee et~al.}(1989)\citenamefont{Rhee, Halley, Hautman,
919     and Rahman}}]{Rhee89}
920     \bibinfo{author}{\bibfnamefont{Y.-J.} \bibnamefont{Rhee}},
921     \bibinfo{author}{\bibfnamefont{J.~W.} \bibnamefont{Halley}},
922     \bibinfo{author}{\bibfnamefont{J.}~\bibnamefont{Hautman}}, \bibnamefont{and}
923     \bibinfo{author}{\bibfnamefont{A.}~\bibnamefont{Rahman}},
924     \bibinfo{journal}{Phys. Rev. B} \textbf{\bibinfo{volume}{40}},
925     \bibinfo{pages}{36} (\bibinfo{year}{1989}).
926    
927     \bibitem[{\citenamefont{Spohr}(1997)}]{Spohr97}
928     \bibinfo{author}{\bibfnamefont{E.}~\bibnamefont{Spohr}}, \bibinfo{journal}{J.
929     Chem. Phys.} \textbf{\bibinfo{volume}{107}}, \bibinfo{pages}{6342}
930     (\bibinfo{year}{1997}).
931    
932     \bibitem[{\citenamefont{Yeh and Berkowitz}(1999)}]{Yeh99}
933     \bibinfo{author}{\bibfnamefont{I.-C.} \bibnamefont{Yeh}} \bibnamefont{and}
934     \bibinfo{author}{\bibfnamefont{M.~L.} \bibnamefont{Berkowitz}},
935     \bibinfo{journal}{J. Chem. Phys.} \textbf{\bibinfo{volume}{111}},
936     \bibinfo{pages}{3155} (\bibinfo{year}{1999}).
937    
938     \bibitem[{\citenamefont{Seifert}(1997)}]{Seifert97}
939     \bibinfo{author}{\bibfnamefont{U.}~\bibnamefont{Seifert}},
940     \bibinfo{journal}{Adv. Phys.} \textbf{\bibinfo{volume}{46}},
941     \bibinfo{pages}{13} (\bibinfo{year}{1997}).
942    
943     \end{thebibliography}
944    
945     \end{document}