1 |
\relax |
2 |
\newlabel{FirstPage}{{}{1}{}{}{}} |
3 |
\citation{Jorgensen83} |
4 |
\citation{Berendsen87} |
5 |
\citation{Jorgensen00} |
6 |
\citation{Jorgensen00} |
7 |
\citation{Jorgensen01} |
8 |
\citation{Ichiye96} |
9 |
\citation{Bratko85} |
10 |
\citation{Bratko95} |
11 |
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{2}{}} |
12 |
\citation{Ichiye96} |
13 |
\citation{Ichiye99} |
14 |
\citation{Ichiye96} |
15 |
\citation{Ichiye99} |
16 |
\citation{Darden99} |
17 |
\citation{Ichiye03} |
18 |
\citation{AllenTildesley} |
19 |
\citation{AllenTildesley} |
20 |
\citation{Berendsen98} |
21 |
\citation{Hoover85} |
22 |
\citation{Hoover86} |
23 |
\citation{Dullweber1997} |
24 |
\citation{Laird97} |
25 |
\@writefile{toc}{\contentsline {section}{\numberline {II}Methods}{4}{}} |
26 |
\newlabel{rfequation}{{7}{4}{}{}{}} |
27 |
\citation{Dullweber1997} |
28 |
\citation{Bernal33} |
29 |
\citation{Rahman72} |
30 |
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Energy conservation using quaternion based integration versus the symplectic step method proposed by Dullweber \emph {et al.} with increasing time step. For each time step, the dotted line is total energy using the symplectic step integrator, and the solid line comes from the quaternion integrator. The larger time step plots are shifted up from the true energy baseline for clarity.}}{6}{}} |
31 |
\newlabel{timestep}{{1}{6}{}{}{}} |
32 |
\citation{Jorgensen98b} |
33 |
\citation{Jorgensen98b} |
34 |
\citation{Clancy94} |
35 |
\citation{CRC80} |
36 |
\citation{Ichiye03} |
37 |
\citation{Jorgensen98b} |
38 |
\citation{Jorgensen98b} |
39 |
\citation{Clancy94} |
40 |
\citation{CRC80} |
41 |
\citation{Ichiye03} |
42 |
\citation{Jorgensen98b} |
43 |
\citation{Clancy94} |
44 |
\citation{CRC80} |
45 |
\@writefile{toc}{\contentsline {section}{\numberline {III}Results and discussion}{7}{}} |
46 |
\@writefile{toc}{\contentsline {subsection}{\numberline {A}Density Behavior}{7}{}} |
47 |
\citation{Berendsen98} |
48 |
\citation{Berendsen98} |
49 |
\citation{Nezbeda02} |
50 |
\citation{Jorgensen98b} |
51 |
\citation{Clancy94} |
52 |
\citation{Ichiye03} |
53 |
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Density versus temperature for TIP4P\cite {Jorgensen98b}, TIP3P\cite {Jorgensen98b}, SPC/E\cite {Clancy94}, SSD without Reaction Field, SSD, and Experiment\cite {CRC80}. The arrows indicate the change in densities observed when turning off the reaction field. The the lower than expected densities for the SSD model were what prompted the original reparameterization.\cite {Ichiye03}}}{8}{}} |
54 |
\newlabel{dense1}{{2}{8}{}{}{}} |
55 |
\citation{Jorgensen01} |
56 |
\citation{Clancy94} |
57 |
\citation{Gillen72} |
58 |
\citation{Mills73} |
59 |
\citation{Clancy94} |
60 |
\citation{Jorgensen01} |
61 |
\citation{Gillen72} |
62 |
\citation{Mills73} |
63 |
\citation{Clancy94} |
64 |
\citation{Jorgensen01} |
65 |
\citation{Gillen72} |
66 |
\citation{Mills73} |
67 |
\@writefile{toc}{\contentsline {subsection}{\numberline {B}Transport Behavior}{9}{}} |
68 |
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Average diffusion coefficient over increasing temperature for SSD, SPC/E\cite {Clancy94}, TIP5P\cite {Jorgensen01}, and Experimental data from Gillen \emph {et al.}\cite {Gillen72}, and from Mills\cite {Mills73}.}}{10}{}} |
69 |
\newlabel{diffuse}{{3}{10}{}{}{}} |
70 |
\@writefile{toc}{\contentsline {subsection}{\numberline {C}Structural Changes and Characterization}{10}{}} |
71 |
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Contour plots of 2D angular g($r$)'s for 512 SSD systems at 100 K (A \& B) and 300 K (C \& D). Contour colors are inverted for clarity: dark areas signify peaks while light areas signify depressions. White areas have g(\emph {r}) values below 0.5 and black areas have values above 1.5.}}{11}{}} |
72 |
\newlabel{contour}{{4}{11}{}{}{}} |
73 |
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Two dimensional illustration of the angles involved in the correlations observed in figure 4{}{}{}\hbox {}.}}{11}{}} |
74 |
\newlabel{corrAngle}{{5}{11}{}{}{}} |
75 |
\citation{Ichiye96} |
76 |
\citation{Ichiye96} |
77 |
\citation{Ichiye03} |
78 |
\citation{Head-Gordon00_1} |
79 |
\citation{Head-Gordon00_1} |
80 |
\citation{Ichiye96} |
81 |
\citation{Soper86} |
82 |
\citation{Head-Gordon00_1} |
83 |
\citation{isosurface} |
84 |
\@writefile{toc}{\contentsline {subsection}{\numberline {D}Adjusted Potentials: SSD/RF and SSD/E}{13}{}} |
85 |
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Parameters for the original and adjusted models}}{14}{}} |
86 |
\newlabel{params}{{I}{14}{}{}{}} |
87 |
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Plots comparing experiment\cite {Head-Gordon00_1} with SSD/E and SSD1 without reaction field (top), as well as SSD/RF and SSD1 with reaction field turned on (bottom). The insets show the respective first peaks in detail. Solid Line - experiment, dashed line - SSD/E and SSD/RF, and dotted line - SSD1 (with and without reaction field).}}{15}{}} |
88 |
\newlabel{grcompare}{{6}{15}{}{}{}} |
89 |
\citation{Sprik91} |
90 |
\citation{Kusalik02} |
91 |
\citation{Badyal00} |
92 |
\citation{Barriol64} |
93 |
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Isosurfaces of the sticky potential for SSD1 (left) and SSD/E \& SSD/RF (right). Light areas correspond to the tetrahedral attractive part, and the darker areas correspond to the dipolar repulsive part.}}{16}{}} |
94 |
\newlabel{isosurface}{{7}{16}{}{}{}} |
95 |
\citation{Jorgensen98b} |
96 |
\citation{Jorgensen00} |
97 |
\citation{Clancy94} |
98 |
\citation{CRC80} |
99 |
\citation{Jorgensen98b} |
100 |
\citation{Jorgensen00} |
101 |
\citation{Clancy94} |
102 |
\citation{CRC80} |
103 |
\citation{Jorgensen98b} |
104 |
\citation{Jorgensen00} |
105 |
\citation{Clancy94} |
106 |
\citation{CRC80} |
107 |
\citation{Jorgensen98b} |
108 |
\citation{Jorgensen00} |
109 |
\citation{Clancy94} |
110 |
\citation{CRC80} |
111 |
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Comparison of densities calculated with SSD/E to SSD1 without a reaction field, TIP3P\cite {Jorgensen98b}, TIP5P\cite {Jorgensen00}, SPC/E\cite {Clancy94}, and Experiment\cite {CRC80}. The window shows a expansion around 300 K with error bars included to clarify this region of interest. Note that both SSD1 and SSD/E show good agreement with experiment when the long-range correction is neglected.}}{17}{}} |
112 |
\newlabel{ssdedense}{{8}{17}{}{}{}} |
113 |
\citation{Gillen72} |
114 |
\citation{Mills73} |
115 |
\citation{Gillen72} |
116 |
\citation{Mills73} |
117 |
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Comparison of densities calculated with SSD/RF to SSD1 with a reaction field, TIP3P\cite {Jorgensen98b}, TIP5P\cite {Jorgensen00}, SPC/E\cite {Clancy94}, and Experiment\cite {CRC80}. The inset shows the necessity of reparameterization when utilizing a reaction field long-ranged correction - SSD/RF provides significantly more accurate densities than SSD1 when performing room temperature simulations.}}{18}{}} |
118 |
\newlabel{ssdrfdense}{{9}{18}{}{}{}} |
119 |
\citation{Gillen72} |
120 |
\citation{Mills73} |
121 |
\citation{Gillen72} |
122 |
\citation{Mills73} |
123 |
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Plots of the diffusion constants calculated from SSD/E and SSD1, both without a reaction field, along with experimental results are from Gillen \emph {et al.}\cite {Gillen72} and Mills\cite {Mills73}. The NVE calculations were performed at the average densities observed in the 1 atm NPT simulations for the respective models. SSD/E is slightly more fluid than experiment at all of the temperatures, but it is closer than SSD1 without a long-range correction.}}{19}{}} |
124 |
\newlabel{ssdediffuse}{{10}{19}{}{}{}} |
125 |
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Plots of the diffusion constants calculated from SSD/RF and SSD1, both with an active reaction field, along with experimental results from Gillen \emph {et al.}\cite {Gillen72} and Mills\cite {Mills73}. The NVE calculations were performed at the average densities observed in the 1 atm NPT simulations for both of the models. Note how accurately SSD/RF simulates the diffusion of water throughout this temperature range. The more rapidly increasing diffusion constants at high temperatures for both models is attributed to the significantly lower densities than observed in experiment.}}{20}{}} |
126 |
\newlabel{ssdrfdiffuse}{{11}{20}{}{}{}} |
127 |
\@writefile{toc}{\contentsline {subsection}{\numberline {E}Additional Observations}{20}{}} |
128 |
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces A water lattice built from the crystal structure that SSD/E assumed when undergoing an extremely restricted temperature NPT simulation. This form of ice is referred to as ice 0 to emphasize its simulation origins. This image was taken of the (001) face of the crystal.}}{21}{}} |
129 |
\newlabel{weirdice}{{12}{21}{}{}{}} |
130 |
\citation{Karplus83} |
131 |
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusions}{22}{}} |
132 |
\bibdata{nptSSD} |
133 |
\bibcite{Jorgensen83}{{1}{}{{}}{{}}} |
134 |
\bibcite{Berendsen87}{{2}{}{{}}{{}}} |
135 |
\bibcite{Jorgensen00}{{3}{}{{}}{{}}} |
136 |
\bibcite{Jorgensen01}{{4}{}{{}}{{}}} |
137 |
\bibcite{Ichiye96}{{5}{}{{}}{{}}} |
138 |
\bibcite{Bratko85}{{6}{}{{}}{{}}} |
139 |
\bibcite{Bratko95}{{7}{}{{}}{{}}} |
140 |
\bibcite{Ichiye99}{{8}{}{{}}{{}}} |
141 |
\bibcite{Darden99}{{9}{}{{}}{{}}} |
142 |
\bibcite{Ichiye03}{{10}{}{{}}{{}}} |
143 |
\bibcite{AllenTildesley}{{11}{}{{}}{{}}} |
144 |
\bibcite{Berendsen98}{{12}{}{{}}{{}}} |
145 |
\bibcite{Hoover85}{{13}{}{{}}{{}}} |
146 |
\bibcite{Hoover86}{{14}{}{{}}{{}}} |
147 |
\bibcite{Dullweber1997}{{15}{}{{}}{{}}} |
148 |
\bibcite{Laird97}{{16}{}{{}}{{}}} |
149 |
\bibcite{Bernal33}{{17}{}{{}}{{}}} |
150 |
\bibcite{Rahman72}{{18}{}{{}}{{}}} |
151 |
\bibcite{Jorgensen98b}{{19}{}{{}}{{}}} |
152 |
\bibcite{Clancy94}{{20}{}{{}}{{}}} |
153 |
\bibcite{CRC80}{{21}{}{{}}{{}}} |
154 |
\@writefile{toc}{\contentsline {section}{\numberline {V}Acknowledgments}{23}{}} |
155 |
\@writefile{toc}{\contentsline {section}{\numberline {}References}{23}{}} |
156 |
\bibcite{Nezbeda02}{{22}{}{{}}{{}}} |
157 |
\bibcite{Gillen72}{{23}{}{{}}{{}}} |
158 |
\bibcite{Mills73}{{24}{}{{}}{{}}} |
159 |
\bibcite{Head-Gordon00_1}{{25}{}{{}}{{}}} |
160 |
\bibcite{Soper86}{{26}{}{{}}{{}}} |
161 |
\bibcite{Sprik91}{{27}{}{{}}{{}}} |
162 |
\bibcite{Kusalik02}{{28}{}{{}}{{}}} |
163 |
\bibcite{Badyal00}{{29}{}{{}}{{}}} |
164 |
\bibcite{Barriol64}{{30}{}{{}}{{}}} |
165 |
\bibcite{Karplus83}{{31}{}{{}}{{}}} |
166 |
\global \chardef \firstnote@num31\relax |
167 |
\global\NAT@numberstrue |
168 |
\bibstyle{jcp} |
169 |
\newlabel{LastBibItem}{{31}{24}{}{}{}} |
170 |
\newlabel{LastPage}{{}{24}} |