ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/ssdePaper/nptSSD.tex
(Generate patch)

Comparing trunk/ssdePaper/nptSSD.tex (file contents):
Revision 1033 by chrisfen, Fri Feb 6 19:15:44 2004 UTC vs.
Revision 1036 by gezelter, Fri Feb 6 21:43:00 2004 UTC

# Line 1 | Line 1
1   %\documentclass[prb,aps,times,twocolumn,tabularx]{revtex4}
2 < \documentclass[preprint,aps]{revtex4}
3 < %\documentclass[11pt]{article}
4 < %\usepackage{endfloat}
2 > %\documentclass[preprint,aps,endfloat]{revtex4}
3 > \documentclass[11pt]{article}
4 > \usepackage{endfloat}
5   \usepackage{amsmath}
6   \usepackage{epsf}
7   \usepackage{berkeley}
8   \usepackage{setspace}
9   \usepackage{tabularx}
10   \usepackage{graphicx}
11 < %\usepackage[ref]{overcite}
12 < %\usepackage{curves}
13 < %\pagestyle{plain}
14 < %\pagenumbering{arabic}
15 < %\oddsidemargin 0.0cm \evensidemargin 0.0cm
16 < %\topmargin -21pt \headsep 10pt
17 < %\textheight 9.0in \textwidth 6.5in
18 < %\brokenpenalty=10000
19 < %\renewcommand{\baselinestretch}{1.2}
11 > \usepackage[ref]{overcite}
12 > \pagestyle{plain}
13 > \pagenumbering{arabic}
14 > \oddsidemargin 0.0cm \evensidemargin 0.0cm
15 > \topmargin -21pt \headsep 10pt
16 > \textheight 9.0in \textwidth 6.5in
17 > \brokenpenalty=10000
18 >
19   %\renewcommand\citemid{\ } % no comma in optional reference note
21 \newcounter{captions}
22 \newcounter{figs}
20  
21   \begin{document}
22  
23   \title{On the structural and transport properties of the soft sticky
24   dipole (SSD) and related single point water models}
25  
26 < \author{Christopher J. Fennell and J. Daniel Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu}}
27 <
28 < \affiliation{Department of Chemistry and Biochemistry\\ University of Notre Dame\\
26 > \author{Christopher J. Fennell and J. Daniel
27 > Gezelter\footnote{Corresponding author. \ Electronic mail:
28 > gezelter@nd.edu} \\ Department of Chemistry and Biochemistry\\ University of Notre Dame\\
29   Notre Dame, Indiana 46556}
30  
31   \date{\today}
32  
33 + \maketitle
34 + \doublespacing
35  
36   \begin{abstract}
37   The density maximum and temperature dependence of the self-diffusion
# Line 60 | Line 59 | family.
59   family.
60   \end{abstract}
61  
63 \maketitle
64
62   \newpage
63  
64   %\narrowtext
68
65  
66   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67   %                              BODY OF TEXT
# Line 287 | Line 283 | time steps is illustrated in figure
283   time steps is illustrated in figure
284   \ref{timestep}.
285  
286 < %\begin{figure}
287 < %\begin{center}
288 < %\epsfxsize=6in
289 < %\epsfbox{timeStep.epsi}
290 < %\caption{Energy conservation using both quaternion-based integration and
291 < %the {\sc dlm} method with increasing time step. The larger time step
292 < %plots are shifted from the true energy baseline (that of $\Delta t$ =
293 < %0.1~fs) for clarity.}
294 < %\label{timestep}
295 < %\end{center}
296 < %\end{figure}
286 > \begin{figure}
287 > \begin{center}
288 > \epsfxsize=6in
289 > \epsfbox{timeStep.epsi}
290 > \caption{Energy conservation using both quaternion-based integration and the
291 > {\sc dlm} method with increasing time step. The larger time step plots
292 > are shifted from the true energy baseline (that of $\Delta t$ =
293 > 0.1~fs) for clarity.}
294 > \label{timestep}
295 > \end{center}
296 > \end{figure}
297  
298   In figure \ref{timestep}, the resulting energy drift at various time
299   steps for both the {\sc dlm} and quaternion integration schemes is
# Line 372 | Line 368 | maximum in this same region (between 255 and 260~K).
368   configurations showed similar results, with a liquid-phase density
369   maximum in this same region (between 255 and 260~K).
370  
371 < %\begin{figure}
372 < %\begin{center}
373 < %\epsfxsize=6in
374 < %\epsfbox{denseSSDnew.eps}
375 < %\caption{Density versus temperature for TIP4P [Ref. \onlinecite{Jorgensen98b}],
376 < % TIP3P [Ref. \onlinecite{Jorgensen98b}], SPC/E [Ref. \onlinecite{Clancy94}], SSD
377 < % without Reaction Field, SSD, and experiment [Ref. \onlinecite{CRC80}]. The
378 < % arrows indicate the change in densities observed when turning off the
379 < % reaction field. The the lower than expected densities for the SSD
380 < % model were what prompted the original reparameterization of SSD1
381 < % [Ref. \onlinecite{Ichiye03}].}
382 < %\label{dense1}
383 < %\end{center}
384 < %\end{figure}
371 > \begin{figure}
372 > \begin{center}
373 > \epsfxsize=6in
374 > \epsfbox{denseSSDnew.eps}
375 > \caption{ Density versus temperature for TIP4P [Ref. \citen{Jorgensen98b}],
376 > TIP3P [Ref. \citen{Jorgensen98b}], SPC/E [Ref. \citen{Clancy94}], SSD
377 > without Reaction Field, SSD, and experiment [Ref. \citen{CRC80}]. The
378 > arrows indicate the change in densities observed when turning off the
379 > reaction field. The the lower than expected densities for the SSD
380 > model were what prompted the original reparameterization of SSD1
381 > [Ref. \citen{Ichiye03}].}
382 > \label{dense1}
383 > \end{center}
384 > \end{figure}
385  
386   The density maximum for SSD compares quite favorably to other
387   simple water models. Figure \ref{dense1} also shows calculated
# Line 456 | Line 452 | results.\cite{Gillen72,Holz00,Clancy94,Jorgensen01}
452   \ref{diffuse}, alongside experimental, SPC/E, and TIP5P
453   results.\cite{Gillen72,Holz00,Clancy94,Jorgensen01}
454  
455 < %\begin{figure}
456 < %\begin{center}
457 < %\epsfxsize=6in
458 < %\epsfbox{betterDiffuse.epsi}
459 < %\caption{Average self-diffusion constant as a function of temperature for
460 < %SSD, SPC/E [Ref. \onlinecite{Clancy94}], and TIP5P
461 < %[Ref. \onlinecite{Jorgensen01}] compared with experimental data
462 < %[Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. Of the three water models
463 < %shown, SSD has the least deviation from the experimental values. The
464 < %rapidly increasing diffusion constants for TIP5P and SSD correspond to
465 < %significant decreases in density at the higher temperatures.}
466 < %\label{diffuse}
467 < %\end{center}
468 < %\end{figure}
455 > \begin{figure}
456 > \begin{center}
457 > \epsfxsize=6in
458 > \epsfbox{betterDiffuse.epsi}
459 > \caption{ Average self-diffusion constant as a function of temperature for
460 > SSD, SPC/E [Ref. \citen{Clancy94}], and TIP5P
461 > [Ref. \citen{Jorgensen01}] compared with experimental data
462 > [Refs. \citen{Gillen72} and \citen{Holz00}]. Of the three water models
463 > shown, SSD has the least deviation from the experimental values. The
464 > rapidly increasing diffusion constants for TIP5P and SSD correspond to
465 > significant decreases in density at the higher temperatures.}
466 > \label{diffuse}
467 > \end{center}
468 > \end{figure}
469  
470   The observed values for the diffusion constant point out one of the
471   strengths of the SSD model. Of the three models shown, the SSD model
# Line 499 | Line 495 | considerably lower than the experimental value.
495   transition occurs at 235~K.  These melting transitions are
496   considerably lower than the experimental value.
497  
498 < %\begin{figure}
499 < %\begin{center}
500 < %\epsfxsize=6in
501 < %\epsfbox{corrDiag.eps}
502 < %\caption{An illustration of angles involved in the correlations observed in Fig. \ref{contour}.}
503 < %\label{corrAngle}
504 < %\end{center}
505 < %\end{figure}
498 > \begin{figure}
499 > \begin{center}
500 > \epsfxsize=6in
501 > \epsfbox{fullContours.eps}
502 > \caption{ Contour plots of 2D angular pair correlation functions for
503 > 512 SSD molecules at 100~K (A \& B) and 300~K (C \& D). Dark areas
504 > signify regions of enhanced density while light areas signify
505 > depletion relative to the bulk density. White areas have pair
506 > correlation values below 0.5 and black areas have values above 1.5.}
507 > \label{contour}
508 > \end{center}
509 > \end{figure}
510  
511 < %\begin{figure}
512 < %\begin{center}
513 < %\epsfxsize=6in
514 < %\epsfbox{fullContours.eps}
515 < %\caption{Contour plots of 2D angular pair correlation functions for
516 < %512 SSD molecules at 100~K (A \& B) and 300~K (C \& D). Dark areas
517 < %signify regions of enhanced density while light areas signify
518 < %depletion relative to the bulk density. White areas have pair
519 < %correlation values below 0.5 and black areas have values above 1.5.}
520 < %\label{contour}
521 < %\end{center}
522 < %\end{figure}
511 > \begin{figure}
512 > \begin{center}
513 > \epsfxsize=6in
514 > \epsfbox{corrDiag.eps}
515 > \caption{ An illustration of angles involved in the correlations observed in Fig. \ref{contour}.}
516 > \label{corrAngle}
517 > \end{center}
518 > \end{figure}
519  
520   Additional analysis of the melting process was performed using
521   two-dimensional structure and dipole angle correlations. Expressions
# Line 612 | Line 608 | the liquid structure in simulations without a long-ran
608  
609   \begin{table}
610   \begin{center}
611 < \caption{Parameters for the original and adjusted models}
611 > \caption{ Parameters for the original and adjusted models}
612   \begin{tabular}{ l  c  c  c  c }
613   \hline \\[-3mm]
614 < \ \ \ Parameters\ \ \  & \ \ \ SSD [Ref. \onlinecite{Ichiye96}] \ \ \
615 < & \ SSD1 [Ref. \onlinecite{Ichiye03}]\ \  & \ SSD/E\ \  & \ \ SSD/RF \\
614 > \ \ \ Parameters\ \ \  & \ \ \ SSD [Ref. \citen{Ichiye96}] \ \ \
615 > & \ SSD1 [Ref. \citen{Ichiye03}]\ \  & \ SSD/E\ \  & \ \ SSD/RF \\
616   \hline \\[-3mm]
617   \ \ \ $\sigma$ (\AA)  & 3.051 & 3.016 & 3.035 & 3.019\\
618   \ \ \ $\epsilon$ (kcal/mol) & 0.152 & 0.152 & 0.152 & 0.152\\
# Line 632 | Line 628 | the liquid structure in simulations without a long-ran
628   \end{center}
629   \end{table}
630  
631 < %\begin{figure}
632 < %\begin{center}
633 < %\epsfxsize=5in
634 < %\epsfbox{GofRCompare.epsi}
635 < %\caption{Plots comparing experiment [Ref. \onlinecite{Head-Gordon00_1}] with
636 < %SSD/E and SSD1 without reaction field (top), as well as
637 < %SSD/RF and SSD1 with reaction field turned on
638 < %(bottom). The insets show the respective first peaks in detail. Note
639 < %how the changes in parameters have lowered and broadened the first
640 < %peak of SSD/E and SSD/RF.}
641 < %\label{grcompare}
642 < %\end{center}
643 < %\end{figure}
631 > \begin{figure}
632 > \begin{center}
633 > \epsfxsize=5in
634 > \epsfbox{GofRCompare.epsi}
635 > \caption{ Plots comparing experiment [Ref. \citen{Head-Gordon00_1}] with
636 > SSD/E and SSD1 without reaction field (top), as well as
637 > SSD/RF and SSD1 with reaction field turned on
638 > (bottom). The insets show the respective first peaks in detail. Note
639 > how the changes in parameters have lowered and broadened the first
640 > peak of SSD/E and SSD/RF.}
641 > \label{grcompare}
642 > \end{center}
643 > \end{figure}
644  
645 < %\begin{figure}
646 < %\begin{center}
647 < %\epsfxsize=6in
648 < %\epsfbox{dualsticky_bw.eps}
649 < %\caption{Positive and negative isosurfaces of the sticky potential for
650 < %SSD1 (left) and SSD/E \& SSD/RF (right). Light areas
651 < %correspond to the tetrahedral attractive component, and darker areas
652 < %correspond to the dipolar repulsive component.}
653 < %\label{isosurface}
654 < %\end{center}
655 < %\end{figure}
645 > \begin{figure}
646 > \begin{center}
647 > \epsfxsize=6in
648 > \epsfbox{dualsticky_bw.eps}
649 > \caption{ Positive and negative isosurfaces of the sticky potential for
650 > SSD1 (left) and SSD/E \& SSD/RF (right). Light areas
651 > correspond to the tetrahedral attractive component, and darker areas
652 > correspond to the dipolar repulsive component.}
653 > \label{isosurface}
654 > \end{center}
655 > \end{figure}
656  
657   In the original paper detailing the development of SSD, Liu and Ichiye
658   placed particular emphasis on an accurate description of the first
# Line 728 | Line 724 | collection times as stated previously.
724   simulations had the same thermalization, equilibration, and data
725   collection times as stated previously.
726  
727 < %\begin{figure}
728 < %\begin{center}
729 < %\epsfxsize=6in
730 < %\epsfbox{ssdeDense.epsi}
731 < %\caption{Comparison of densities calculated with SSD/E to
732 < %SSD1 without a reaction field, TIP3P [Ref. \onlinecite{Jorgensen98b}],
733 < %TIP5P [Ref. \onlinecite{Jorgensen00}], SPC/E [Ref. \onlinecite{Clancy94}] and
734 < %experiment [Ref. \onlinecite{CRC80}]. The window shows a expansion around
735 < %300 K with error bars included to clarify this region of
736 < %interest. Note that both SSD1 and SSD/E show good agreement with
737 < %experiment when the long-range correction is neglected.}
738 < %\label{ssdedense}
739 < %\end{center}
740 < %\end{figure}
727 > \begin{figure}
728 > \begin{center}
729 > \epsfxsize=6in
730 > \epsfbox{ssdeDense.epsi}
731 > \caption{ Comparison of densities calculated with SSD/E to
732 > SSD1 without a reaction field, TIP3P [Ref. \citen{Jorgensen98b}],
733 > TIP5P [Ref. \citen{Jorgensen00}], SPC/E [Ref. \citen{Clancy94}] and
734 > experiment [Ref. \citen{CRC80}]. The window shows a expansion around
735 > 300 K with error bars included to clarify this region of
736 > interest. Note that both SSD1 and SSD/E show good agreement with
737 > experiment when the long-range correction is neglected.}
738 > \label{ssdedense}
739 > \end{center}
740 > \end{figure}
741  
742   Fig. \ref{ssdedense} shows the density profile for the SSD/E
743   model in comparison to SSD1 without a reaction field, other
# Line 765 | Line 761 | same transition temperature observed with SSD and SSD1
761   melting transition for SSD/E was shown to occur at 235~K.  The
762   same transition temperature observed with SSD and SSD1.
763  
764 < %\begin{figure}
765 < %\begin{center}
766 < %\epsfxsize=6in
767 < %\epsfbox{ssdrfDense.epsi}
768 < %\caption{Comparison of densities calculated with SSD/RF to
769 < %SSD1 with a reaction field, TIP3P [Ref. \onlinecite{Jorgensen98b}],
770 < %TIP5P [Ref. \onlinecite{Jorgensen00}], SPC/E [Ref. \onlinecite{Clancy94}], and
771 < %experiment [Ref. \onlinecite{CRC80}]. The inset shows the necessity of
772 < %reparameterization when utilizing a reaction field long-ranged
773 < %correction - SSD/RF provides significantly more accurate
774 < %densities than SSD1 when performing room temperature
775 < %simulations.}
776 < %\label{ssdrfdense}
777 < %\end{center}
778 < %\end{figure}
764 > \begin{figure}
765 > \begin{center}
766 > \epsfxsize=6in
767 > \epsfbox{ssdrfDense.epsi}
768 > \caption{ Comparison of densities calculated with SSD/RF to
769 > SSD1 with a reaction field, TIP3P [Ref. \citen{Jorgensen98b}],
770 > TIP5P [Ref. \citen{Jorgensen00}], SPC/E [Ref. \citen{Clancy94}], and
771 > experiment [Ref. \citen{CRC80}]. The inset shows the necessity of
772 > reparameterization when utilizing a reaction field long-ranged
773 > correction - SSD/RF provides significantly more accurate
774 > densities than SSD1 when performing room temperature
775 > simulations.}
776 > \label{ssdrfdense}
777 > \end{center}
778 > \end{figure}
779  
780   Including the reaction field long-range correction in the simulations
781   results in a more interesting comparison.  A density profile including
# Line 799 | Line 795 | maximum at 255~K, fairly close to the density maxima o
795   maximum at 255~K, fairly close to the density maxima of 260~K and
796   265~K, shown by SSD and SSD1 respectively.
797  
798 < %\begin{figure}
799 < %\begin{center}
800 < %\epsfxsize=6in
801 < %\epsfbox{ssdeDiffuse.epsi}
802 < %\caption{The diffusion constants calculated from SSD/E and
803 < %SSD1 (both without a reaction field) along with experimental results
804 < %[Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. The NVE calculations were
805 < %performed at the average densities observed in the 1 atm NPT
806 < %simulations for the respective models. SSD/E is slightly more mobile
807 < %than experiment at all of the temperatures, but it is closer to
808 < %experiment at biologically relevant temperatures than SSD1 without a
809 < %long-range correction.}
810 < %\label{ssdediffuse}
811 < %\end{center}
812 < %\end{figure}
798 > \begin{figure}
799 > \begin{center}
800 > \epsfxsize=6in
801 > \epsfbox{ssdeDiffuse.epsi}
802 > \caption{ The diffusion constants calculated from SSD/E and
803 > SSD1 (both without a reaction field) along with experimental results
804 > [Refs. \citen{Gillen72} and \citen{Holz00}]. The NVE calculations were
805 > performed at the average densities observed in the 1 atm NPT
806 > simulations for the respective models. SSD/E is slightly more mobile
807 > than experiment at all of the temperatures, but it is closer to
808 > experiment at biologically relevant temperatures than SSD1 without a
809 > long-range correction.}
810 > \label{ssdediffuse}
811 > \end{center}
812 > \end{figure}
813  
814   The reparameterization of the SSD water model, both for use with and
815   without an applied long-range correction, brought the densities up to
# Line 840 | Line 836 | conditions.
836   of SSD/E relative to SSD1 under the most commonly simulated
837   conditions.
838  
839 < %\begin{figure}
840 < %\begin{center}
841 < %\epsfxsize=6in
842 < %\epsfbox{ssdrfDiffuse.epsi}
843 < %\caption{The diffusion constants calculated from SSD/RF and
844 < %SSD1 (both with an active reaction field) along with
845 < %experimental results [Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. The
846 < %NVE calculations were performed at the average densities observed in
847 < %the 1 atm NPT simulations for both of the models. SSD/RF
848 < %simulates the diffusion of water throughout this temperature range
849 < %very well. The rapidly increasing diffusion constants at high
850 < %temperatures for both models can be attributed to lower calculated
851 < %densities than those observed in experiment.}
852 < %\label{ssdrfdiffuse}
853 < %\end{center}
854 < %\end{figure}
839 > \begin{figure}
840 > \begin{center}
841 > \epsfxsize=6in
842 > \epsfbox{ssdrfDiffuse.epsi}
843 > \caption{ The diffusion constants calculated from SSD/RF and
844 > SSD1 (both with an active reaction field) along with
845 > experimental results [Refs. \citen{Gillen72} and \citen{Holz00}]. The
846 > NVE calculations were performed at the average densities observed in
847 > the 1 atm NPT simulations for both of the models. SSD/RF
848 > simulates the diffusion of water throughout this temperature range
849 > very well. The rapidly increasing diffusion constants at high
850 > temperatures for both models can be attributed to lower calculated
851 > densities than those observed in experiment.}
852 > \label{ssdrfdiffuse}
853 > \end{center}
854 > \end{figure}
855  
856   In figure \ref{ssdrfdiffuse}, the diffusion constants for SSD/RF are
857   compared to SSD1 with an active reaction field. Note that SSD/RF
# Line 874 | Line 870 | reparameterization when using an altered long-range co
870   \begin{minipage}{\linewidth}
871   \renewcommand{\thefootnote}{\thempfootnote}
872   \begin{center}
873 < \caption{Properties of the single-point water models compared with
873 > \caption{ Properties of the single-point water models compared with
874   experimental data at ambient conditions. Deviations of the of the
875   averages are given in parentheses.}
876   \begin{tabular}{ l  c  c  c  c  c }
# Line 887 | Line 883 | Ref. \onlinecite{Head-Gordon00_1}} \\
883   \ \ $D$ ($10^{-5}$ cm$^2$/s) & 1.78(0.7) & 2.51(0.18) & 2.00(0.17) & 2.32(0.06) & 2.299\cite{Mills73} \\
884   \ \ Coordination Number ($n_C$) & 3.9 & 4.3 & 3.8 & 4.4 &
885   4.7\footnote{Calculated by integrating $g_{\text{OO}}(r)$ in
886 < Ref. \onlinecite{Head-Gordon00_1}} \\
886 > Ref. \citen{Head-Gordon00_1}} \\
887   \ \ H-bonds per particle ($n_H$) & 3.7 & 3.6 & 3.7 & 3.7 &
888   3.5\footnote{Calculated by integrating $g_{\text{OH}}(r)$ in
889 < Ref. \onlinecite{Soper86}}  \\
890 < \ \ $\tau_1$ (ps) & 10.9(0.6) & 7.3(0.4) & 7.5(0.7) & 7.2(0.4) & 5.7\footnote{Calculated for 298 K from data in Ref. \onlinecite{Eisenberg69}} \\
889 > Ref. \citen{Soper86}}  \\
890 > \ \ $\tau_1$ (ps) & 10.9(0.6) & 7.3(0.4) & 7.5(0.7) & 7.2(0.4) & 5.7\footnote{Calculated for 298 K from data in Ref. \citen{Eisenberg69}} \\
891   \ \ $\tau_2$ (ps) & 4.7(0.4) & 3.1(0.2) & 3.5(0.3) & 3.2(0.2) & 2.3\footnote{Calculated for 298 K from data in
892 < Ref. \onlinecite{Krynicki66}}
892 > Ref. \citen{Krynicki66}}
893   \end{tabular}
894   \label{liquidproperties}
895   \end{center}
# Line 942 | Line 938 | the NMR data in Ref. \onlinecite{Krynicki66} at a temp
938   averaged over five detailed NVE simulations performed at the ambient
939   conditions for each of the respective models. It should be noted that
940   the commonly cited value of 1.9 ps for $\tau_2$ was determined from
941 < the NMR data in Ref. \onlinecite{Krynicki66} at a temperature near
941 > the NMR data in Ref. \citen{Krynicki66} at a temperature near
942   34$^\circ$C.\cite{Rahman71} Because of the strong temperature
943   dependence of $\tau_2$, it is necessary to recalculate it at 298~K to
944   make proper comparisons. The value shown in Table
945   \ref{liquidproperties} was calculated from the same NMR data in the
946 < fashion described in Ref. \onlinecite{Krynicki66}. Similarly, $\tau_1$ was
947 < recomputed for 298~K from the data in Ref. \onlinecite{Eisenberg69}.
946 > fashion described in Ref. \citen{Krynicki66}. Similarly, $\tau_1$ was
947 > recomputed for 298~K from the data in Ref. \citen{Eisenberg69}.
948   Again, SSD/E and SSD/RF show improved behavior over SSD1, both with
949   and without an active reaction field. Turning on the reaction field
950   leads to much improved time constants for SSD1; however, these results
# Line 959 | Line 955 | can be attributed to the use of the Ewald sum.\cite{Ic
955  
956   \subsection{Additional Observations}
957  
958 < %\begin{figure}
959 < %\begin{center}
960 < %\epsfxsize=6in
961 < %\epsfbox{icei_bw.eps}
962 < %\caption{The most stable crystal structure assumed by the SSD family
963 < %of water models.  We refer to this structure as Ice-{\it i} to
964 < %indicate its origins in computer simulation.  This image was taken of
965 < %the (001) face of the crystal.}
966 < %\label{weirdice}
967 < %\end{center}
968 < %\end{figure}
958 > \begin{figure}
959 > \begin{center}
960 > \epsfxsize=6in
961 > \epsfbox{icei_bw.eps}
962 > \caption{ The most stable crystal structure assumed by the SSD family
963 > of water models.  We refer to this structure as Ice-{\it i} to
964 > indicate its origins in computer simulation.  This image was taken of
965 > the (001) face of the crystal.}
966 > \label{weirdice}
967 > \end{center}
968 > \end{figure}
969  
970   While performing a series of melting simulations on an early iteration
971   of SSD/E not discussed in this paper, we observed
# Line 1010 | Line 1006 | family, Ice-{\it i} had the lowest calculated enthalpy
1006  
1007   \begin{table}
1008   \begin{center}
1009 < \caption{Enthalpies of Formation (in kcal / mol) of the three crystal
1009 > \caption{ Enthalpies of Formation (in kcal / mol) of the three crystal
1010   structures (at 1 K) exhibited by the SSD family of water models}
1011   \begin{tabular}{ l  c  c  c  }
1012   \hline \\[-3mm]
# Line 1086 | Line 1082 | DMR-0079647.
1082  
1083   \bibliographystyle{jcp}
1084   \bibliography{nptSSD}
1089
1090 \newpage
1091
1092 \begin{list}
1093  {Figure \arabic{captions}: }{\usecounter{captions}
1094        \setlength{\rightmargin}{\leftmargin}}
1095        
1096 \item Energy conservation using both quaternion-based integration and
1097 the {\sc dlm} method with increasing time step. The larger time step
1098 plots are shifted from the true energy baseline (that of $\Delta t$ =
1099 0.1~fs) for clarity.
1100
1101 \item Density versus temperature for TIP4P [Ref. \onlinecite{Jorgensen98b}],
1102 TIP3P [Ref. \onlinecite{Jorgensen98b}], SPC/E
1103 [Ref. \onlinecite{Clancy94}], SSD without Reaction Field, SSD, and
1104 experiment [Ref. \onlinecite{CRC80}]. The arrows indicate the change
1105 in densities observed when turning off the reaction field. The the
1106 lower than expected densities for the SSD model were what prompted the
1107 original reparameterization of SSD1 [Ref. \onlinecite{Ichiye03}].
1108
1109 \item Average self-diffusion constant as a function of temperature for
1110 SSD, SPC/E [Ref. \onlinecite{Clancy94}], and TIP5P
1111 [Ref. \onlinecite{Jorgensen01}] compared with experimental data
1112 [Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. Of the three
1113 water models shown, SSD has the least deviation from the experimental
1114 values. The rapidly increasing diffusion constants for TIP5P and SSD
1115 correspond to significant decreases in density at the higher
1116 temperatures.
1117
1118 \item An illustration of angles involved in the correlations observed in
1119 Fig. \ref{contour}.
1120
1121 \item Contour plots of 2D angular pair correlation functions for
1122 512 SSD molecules at 100~K (A \& B) and 300~K (C \& D). Dark areas
1123 signify regions of enhanced density while light areas signify
1124 depletion relative to the bulk density. White areas have pair
1125 correlation values below 0.5 and black areas have values above 1.5.
1126
1127 \item Plots comparing experiment [Ref. \onlinecite{Head-Gordon00_1}] with
1128 SSD/E and SSD1 without reaction field (top), as well as SSD/RF and
1129 SSD1 with reaction field turned on (bottom). The insets show the
1130 respective first peaks in detail. Note how the changes in parameters
1131 have lowered and broadened the first peak of SSD/E and SSD/RF.
1132
1133 \item Positive and negative isosurfaces of the sticky potential for
1134 SSD1 (left) and SSD/E \& SSD/RF (right). Light areas
1135 correspond to the tetrahedral attractive component, and darker areas
1136 correspond to the dipolar repulsive component.
1137
1138 \item Comparison of densities calculated with SSD/E to
1139 SSD1 without a reaction field, TIP3P [Ref. \onlinecite{Jorgensen98b}],
1140 TIP5P [Ref. \onlinecite{Jorgensen00}], SPC/E [Ref. \onlinecite{Clancy94}] and
1141 experiment [Ref. \onlinecite{CRC80}]. The window shows a expansion around
1142 300 K with error bars included to clarify this region of
1143 interest. Note that both SSD1 and SSD/E show good agreement with
1144 experiment when the long-range correction is neglected.
1145
1146 \item Comparison of densities calculated with SSD/RF to
1147 SSD1 with a reaction field, TIP3P [Ref. \onlinecite{Jorgensen98b}],
1148 TIP5P [Ref. \onlinecite{Jorgensen00}], SPC/E [Ref. \onlinecite{Clancy94}], and
1149 experiment [Ref. \onlinecite{CRC80}]. The inset shows the necessity of
1150 reparameterization when utilizing a reaction field long-ranged
1151 correction - SSD/RF provides significantly more accurate
1152 densities than SSD1 when performing room temperature
1153 simulations.
1154
1155 \item The diffusion constants calculated from SSD/E and
1156 SSD1 (both without a reaction field) along with experimental results
1157 [Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. The NVE calculations were
1158 performed at the average densities observed in the 1 atm NPT
1159 simulations for the respective models. SSD/E is slightly more mobile
1160 than experiment at all of the temperatures, but it is closer to
1161 experiment at biologically relevant temperatures than SSD1 without a
1162 long-range correction.
1163
1164 \item The diffusion constants calculated from SSD/RF and
1165 SSD1 (both with an active reaction field) along with
1166 experimental results [Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. The
1167 NVE calculations were performed at the average densities observed in
1168 the 1 atm NPT simulations for both of the models. SSD/RF
1169 simulates the diffusion of water throughout this temperature range
1170 very well. The rapidly increasing diffusion constants at high
1171 temperatures for both models can be attributed to lower calculated
1172 densities than those observed in experiment.
1173
1174 \item The most stable crystal structure assumed by the SSD family
1175 of water models.  We refer to this structure as Ice-{\it i} to
1176 indicate its origins in computer simulation.  This image was taken of
1177 the (001) face of the crystal.
1178 \end{list}
1179
1180 \newpage
1181
1182 \begin{figure}
1183 \begin{center}
1184 \epsfxsize=6in
1185 \epsfbox{timeStep.epsi}
1186 %\caption{Energy conservation using both quaternion-based integration and
1187 %the {\sc dlm} method with increasing time step. The larger time step
1188 %plots are shifted from the true energy baseline (that of $\Delta t$ =
1189 %0.1~fs) for clarity.}
1190 \label{timestep}
1191 \end{center}
1192 \end{figure}
1193
1194 \newpage
1195
1196 \begin{figure}
1197 \begin{center}
1198 \epsfxsize=6in
1199 \epsfbox{denseSSDnew.eps}
1200 %\caption{Density versus temperature for TIP4P [Ref. \onlinecite{Jorgensen98b}],
1201 % TIP3P [Ref. \onlinecite{Jorgensen98b}], SPC/E [Ref. \onlinecite{Clancy94}], SSD
1202 % without Reaction Field, SSD, and experiment [Ref. \onlinecite{CRC80}]. The
1203 % arrows indicate the change in densities observed when turning off the
1204 % reaction field. The the lower than expected densities for the SSD
1205 % model were what prompted the original reparameterization of SSD1
1206 % [Ref. \onlinecite{Ichiye03}].}
1207 \label{dense1}
1208 \end{center}
1209 \end{figure}
1085  
1211 \newpage
1086  
1213 \begin{figure}
1214 \begin{center}
1215 \epsfxsize=6in
1216 \epsfbox{betterDiffuse.epsi}
1217 %\caption{Average self-diffusion constant as a function of temperature for
1218 %SSD, SPC/E [Ref. \onlinecite{Clancy94}], and TIP5P
1219 %[Ref. \onlinecite{Jorgensen01}] compared with experimental data
1220 %[Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. Of the three water models
1221 %shown, SSD has the least deviation from the experimental values. The
1222 %rapidly increasing diffusion constants for TIP5P and SSD correspond to
1223 %significant decreases in density at the higher temperatures.}
1224 \label{diffuse}
1225 \end{center}
1226 \end{figure}
1227
1228 \newpage
1229
1230 \begin{figure}
1231 \begin{center}
1232 \epsfxsize=6in
1233 \epsfbox{corrDiag.eps}
1234 %\caption{An illustration of angles involved in the correlations observed in Fig. \ref{contour}.}
1235 \label{corrAngle}
1236 \end{center}
1237 \end{figure}
1238
1239 \newpage
1240
1241 \begin{figure}
1242 \begin{center}
1243 \epsfxsize=6in
1244 \epsfbox{fullContours.eps}
1245 %\caption{Contour plots of 2D angular pair correlation functions for
1246 %512 SSD molecules at 100~K (A \& B) and 300~K (C \& D). Dark areas
1247 %signify regions of enhanced density while light areas signify
1248 %depletion relative to the bulk density. White areas have pair
1249 %correlation values below 0.5 and black areas have values above 1.5.}
1250 \label{contour}
1251 \end{center}
1252 \end{figure}
1253
1254 \newpage
1255
1256 \begin{figure}
1257 \begin{center}
1258 \epsfxsize=6in
1259 \epsfbox{GofRCompare.epsi}
1260 %\caption{Plots comparing experiment [Ref. \onlinecite{Head-Gordon00_1}] with
1261 %SSD/E and SSD1 without reaction field (top), as well as
1262 %SSD/RF and SSD1 with reaction field turned on
1263 %(bottom). The insets show the respective first peaks in detail. Note
1264 %how the changes in parameters have lowered and broadened the first
1265 %peak of SSD/E and SSD/RF.}
1266 \label{grcompare}
1267 \end{center}
1268 \end{figure}
1269
1270 \newpage
1271
1272 \begin{figure}
1273 \begin{center}
1274 \epsfxsize=7in
1275 \epsfbox{dualsticky_bw.eps}
1276 %\caption{Positive and negative isosurfaces of the sticky potential for
1277 %SSD1 (left) and SSD/E \& SSD/RF (right). Light areas
1278 %correspond to the tetrahedral attractive component, and darker areas
1279 %correspond to the dipolar repulsive component.}
1280 \label{isosurface}
1281 \end{center}
1282 \end{figure}
1283
1284 \newpage
1285
1286 \begin{figure}
1287 \begin{center}
1288 \epsfxsize=6in
1289 \epsfbox{ssdeDense.epsi}
1290 %\caption{Comparison of densities calculated with SSD/E to
1291 %SSD1 without a reaction field, TIP3P [Ref. \onlinecite{Jorgensen98b}],
1292 %TIP5P [Ref. \onlinecite{Jorgensen00}], SPC/E [Ref. \onlinecite{Clancy94}] and
1293 %experiment [Ref. \onlinecite{CRC80}]. The window shows a expansion around
1294 %300 K with error bars included to clarify this region of
1295 %interest. Note that both SSD1 and SSD/E show good agreement with
1296 %experiment when the long-range correction is neglected.}
1297 \label{ssdedense}
1298 \end{center}
1299 \end{figure}
1300
1301 \newpage
1302
1303 \begin{figure}
1304 \begin{center}
1305 \epsfxsize=6in
1306 \epsfbox{ssdrfDense.epsi}
1307 %\caption{Comparison of densities calculated with SSD/RF to
1308 %SSD1 with a reaction field, TIP3P [Ref. \onlinecite{Jorgensen98b}],
1309 %TIP5P [Ref. \onlinecite{Jorgensen00}], SPC/E [Ref. \onlinecite{Clancy94}], and
1310 %experiment [Ref. \onlinecite{CRC80}]. The inset shows the necessity of
1311 %reparameterization when utilizing a reaction field long-ranged
1312 %correction - SSD/RF provides significantly more accurate
1313 %densities than SSD1 when performing room temperature
1314 %simulations.}
1315 \label{ssdrfdense}
1316 \end{center}
1317 \end{figure}
1318
1319 \newpage
1320
1321 \begin{figure}
1322 \begin{center}
1323 \epsfxsize=6in
1324 \epsfbox{ssdeDiffuse.epsi}
1325 %\caption{The diffusion constants calculated from SSD/E and
1326 %SSD1 (both without a reaction field) along with experimental results
1327 %[Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. The NVE calculations were
1328 %performed at the average densities observed in the 1 atm NPT
1329 %simulations for the respective models. SSD/E is slightly more mobile
1330 %than experiment at all of the temperatures, but it is closer to
1331 %experiment at biologically relevant temperatures than SSD1 without a
1332 %long-range correction.}
1333 \label{ssdediffuse}
1334 \end{center}
1335 \end{figure}
1336
1337 \newpage
1338
1339 \begin{figure}
1340 \begin{center}
1341 \epsfxsize=6in
1342 \epsfbox{ssdrfDiffuse.epsi}
1343 %\caption{The diffusion constants calculated from SSD/RF and
1344 %SSD1 (both with an active reaction field) along with
1345 %experimental results [Refs. \onlinecite{Gillen72} and \onlinecite{Holz00}]. The
1346 %NVE calculations were performed at the average densities observed in
1347 %the 1 atm NPT simulations for both of the models. SSD/RF
1348 %simulates the diffusion of water throughout this temperature range
1349 %very well. The rapidly increasing diffusion constants at high
1350 %temperatures for both models can be attributed to lower calculated
1351 %densities than those observed in experiment.}
1352 \label{ssdrfdiffuse}
1353 \end{center}
1354 \end{figure}
1355
1356 \newpage
1357
1358 \begin{figure}
1359 \begin{center}
1360 \epsfxsize=6in
1361 \epsfbox{icei_bw.eps}
1362 %\caption{The most stable crystal structure assumed by the SSD family
1363 %of water models.  We refer to this structure as Ice-{\it i} to
1364 %indicate its origins in computer simulation.  This image was taken of
1365 %the (001) face of the crystal.}
1366 \label{weirdice}
1367 \end{center}
1368 \end{figure}
1369
1087   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines