ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2807
Committed: Wed Jun 7 01:49:15 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 20095 byte(s)
Log Message:
more reference fixes

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2685 \chapter{\label{chapt:appendix}APPENDIX}
3    
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2807 Scientific Computing community\cite{Wilson}. For instance, in the
8 tim 2688 last 20 years , there are quite a few MD packages that were
9     developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17    
18 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
19    
20 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
21     in software design. Although originated as an architectural concept
22 tim 2807 for buildings and towns by Christopher Alexander
23     \cite{Alexander1987}, software patterns first became popular with
24     the wide acceptance of the book, Design Patterns: Elements of
25     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
26     the experience, knowledge and insights of developers who have
27     successfully used these patterns in their own work. Patterns are
28     reusable. They provide a ready-made solution that can be adapted to
29     different problems as necessary. Pattern are expressive. they
30     provide a common vocabulary of solutions that can express large
31     solutions succinctly.
32 tim 2685
33 tim 2688 Patterns are usually described using a format that includes the
34     following information:
35     \begin{enumerate}
36     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
37     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
38     in the literature. In this case it is common practice to document these nicknames or synonyms under
39     the heading of \emph{Aliases} or \emph{Also Known As}.
40     \item The \emph{motivation} or \emph{context} that this pattern applies
41     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
42     \item The \emph{solution} to the problem that the pattern
43     addresses. It describes how to construct the necessary work products. The description may include
44     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
45     collaborations, to show how the problem is solved.
46     \item The \emph{consequences} of using the given solution to solve a
47     problem, both positive and negative.
48     \end{enumerate}
49 tim 2685
50 tim 2688 As one of the latest advanced techniques emerged from
51     object-oriented community, design patterns were applied in some of
52     the modern scientific software applications, such as JMol, OOPSE
53 tim 2693 \cite{Meineke05} and PROTOMOL \cite{Matthey05} \textit{etc}.
54 tim 2685
55 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
56     The Singleton pattern ensures that only one instance of a class is
57     created. All objects that use an instance of that class use the same
58     instance.
59    
60 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
61     The Factory Method pattern is a creational pattern which deals with
62     the problem of creating objects without specifying the exact class
63     of object that will be created. Factory Method solves this problem
64     by defining a separate method for creating the objects, which
65     subclasses can then override to specify the derived type of product
66     that will be created.
67 tim 2685
68    
69 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
70     The purpose of the Visitor Pattern is to encapsulate an operation
71     that you want to perform on the elements of a data structure. In
72     this way, you can change the operation being performed on a
73     structure without the need of changing the classes of the elements
74     that you are operating on.
75 tim 2685
76    
77 tim 2688 \subsection{\label{appendixSection:templateMethod}Template Method}
78    
79 tim 2685 \section{\label{appendixSection:analysisFramework}Analysis Framework}
80    
81 tim 2730 \section{\label{appendixSection:concepts}Concepts}
82 tim 2685
83 tim 2730 OOPSE manipulates both traditional atoms as well as some objects
84     that {\it behave like atoms}. These objects can be rigid
85     collections of atoms or atoms which have orientational degrees of
86     freedom. Here is a diagram of the class heirarchy:
87 tim 2688
88 tim 2806 %\begin{figure}
89     %\centering
90     %\includegraphics[width=3in]{heirarchy.eps}
91     %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
92     %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
93     %selection syntax allows the user to select any of the objects that
94     %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
95     %\end{figure}
96 tim 2688
97 tim 2730 \begin{itemize}
98     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
99     integrators and minimizers.
100     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
101     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
102     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
103     DirectionalAtom}s which behaves as a single unit.
104     \end{itemize}
105 tim 2688
106 tim 2730 Every Molecule, Atom and DirectionalAtom in {\sc oopse} have their
107     own names which are specified in the {\tt .md} file. In contrast,
108     RigidBodies are denoted by their membership and index inside a
109     particular molecule: [MoleculeName]\_RB\_[index] (the contents
110     inside the brackets depend on the specifics of the simulation). The
111     names of rigid bodies are generated automatically. For example, the
112     name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
113    
114     \section{\label{appendixSection:syntax}Syntax of the Select Command}
115    
116     The most general form of the select command is: {\tt select {\it
117     expression}}
118    
119     This expression represents an arbitrary set of StuntDoubles (Atoms
120     or RigidBodies) in {\sc oopse}. Expressions are composed of either
121     name expressions, index expressions, predefined sets, user-defined
122     expressions, comparison operators, within expressions, or logical
123     combinations of the above expression types. Expressions can be
124     combined using parentheses and the Boolean operators.
125    
126     \subsection{\label{appendixSection:logical}Logical expressions}
127    
128     The logical operators allow complex queries to be constructed out of
129     simpler ones using the standard boolean connectives {\bf and}, {\bf
130     or}, {\bf not}. Parentheses can be used to alter the precedence of
131     the operators.
132    
133     \begin{center}
134     \begin{tabular}{|ll|}
135     \hline
136     {\bf logical operator} & {\bf equivalent operator} \\
137     \hline
138     and & ``\&'', ``\&\&'' \\
139     or & ``$|$'', ``$||$'', ``,'' \\
140     not & ``!'' \\
141     \hline
142     \end{tabular}
143     \end{center}
144    
145     \subsection{\label{appendixSection:name}Name expressions}
146    
147     \begin{center}
148 tim 2805 \begin{tabular}{|llp{2in}|}
149 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
150     of
151     examples} \\
152     \hline expression without ``.'' & select DMPC & select all
153     StuntDoubles
154     belonging to all DMPC molecules \\
155     & select C* & select all atoms which have atom types beginning with C
156     \\
157     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
158     only select the rigid bodies, and not the atoms belonging to them). \\
159     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
160     O\_TIP3P
161     atoms belonging to TIP3P molecules \\
162     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
163     the first
164     RigidBody in each DMPC molecule \\
165     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
166     molecule \\
167     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
168     select all atoms
169     belonging to all rigid bodies within all DMPC molecules \\
170     \hline
171     \end{tabular}
172     \end{center}
173    
174     \subsection{\label{appendixSection:index}Index expressions}
175    
176     \begin{center}
177     \begin{tabular}{|lp{4in}|}
178     \hline
179     {\bf examples} & {\bf translation of examples} \\
180     \hline
181     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
182     select 20 to 30 & select all of the StuntDoubles belonging to
183     molecules which have global indices between 20 (inclusive) and 30
184     (exclusive) \\
185     \hline
186     \end{tabular}
187     \end{center}
188    
189     \subsection{\label{appendixSection:predefined}Predefined sets}
190    
191     \begin{center}
192     \begin{tabular}{|ll|}
193     \hline
194     {\bf keyword} & {\bf description} \\
195     \hline
196     all & select all StuntDoubles \\
197     none & select none of the StuntDoubles \\
198     \hline
199     \end{tabular}
200     \end{center}
201    
202     \subsection{\label{appendixSection:userdefined}User-defined expressions}
203    
204     Users can define arbitrary terms to represent groups of
205     StuntDoubles, and then use the define terms in select commands. The
206     general form for the define command is: {\bf define {\it term
207     expression}}
208    
209     Once defined, the user can specify such terms in boolean expressions
210    
211     {\tt define SSDWATER SSD or SSD1 or SSDRF}
212    
213     {\tt select SSDWATER}
214    
215     \subsection{\label{appendixSection:comparison}Comparison expressions}
216    
217     StuntDoubles can be selected by using comparision operators on their
218     properties. The general form for the comparison command is: a
219     property name, followed by a comparision operator and then a number.
220    
221     \begin{center}
222     \begin{tabular}{|l|l|}
223     \hline
224     {\bf property} & mass, charge \\
225     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
226     ``$<=$'', ``$!=$'' \\
227     \hline
228     \end{tabular}
229     \end{center}
230    
231     For example, the phrase {\tt select mass > 16.0 and charge < -2}
232 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
233 tim 2730 charges less than -2.
234    
235     \subsection{\label{appendixSection:within}Within expressions}
236    
237     The ``within'' keyword allows the user to select all StuntDoubles
238     within the specified distance (in Angstroms) from a selection,
239     including the selected atom itself. The general form for within
240     selection is: {\tt select within(distance, expression)}
241    
242     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
243     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
244     atoms.
245    
246     \section{\label{appendixSection:tools}Tools which use the selection command}
247    
248     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
249    
250     Dump2XYZ can transform an OOPSE dump file into a xyz file which can
251     be opened by other molecular dynamics viewers such as Jmol and VMD.
252     The options available for Dump2XYZ are as follows:
253    
254    
255     \begin{longtable}[c]{|EFG|}
256     \caption{Dump2XYZ Command-line Options}
257     \\ \hline
258     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
259     \endhead
260     \hline
261     \endfoot
262     -h & {\tt -{}-help} & Print help and exit \\
263     -V & {\tt -{}-version} & Print version and exit \\
264     -i & {\tt -{}-input=filename} & input dump file \\
265     -o & {\tt -{}-output=filename} & output file name \\
266     -n & {\tt -{}-frame=INT} & print every n frame (default=`1') \\
267     -w & {\tt -{}-water} & skip the the waters (default=off) \\
268     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
269     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
270     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
271     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
272     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
273     & {\tt -{}-repeatX=INT} & The number of images to repeat in the x direction (default=`0') \\
274     & {\tt -{}-repeatY=INT} & The number of images to repeat in the y direction (default=`0') \\
275     & {\tt -{}-repeatZ=INT} & The number of images to repeat in the z direction (default=`0') \\
276     -s & {\tt -{}-selection=selection script} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
277     converted. \\
278     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
279     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
280     \end{longtable}
281    
282    
283     \subsection{\label{appendixSection:StaticProps}StaticProps}
284    
285     {\tt StaticProps} can compute properties which are averaged over
286     some or all of the configurations that are contained within a dump
287     file. The most common example of a static property that can be
288     computed is the pair distribution function between atoms of type $A$
289     and other atoms of type $B$, $g_{AB}(r)$. StaticProps can also be
290     used to compute the density distributions of other molecules in a
291     reference frame {\it fixed to the body-fixed reference frame} of a
292     selected atom or rigid body.
293    
294     There are five seperate radial distribution functions availiable in
295     OOPSE. Since every radial distrbution function invlove the
296     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
297     -{}-sele2} must be specified to tell StaticProps which bodies to
298     include in the calculation.
299    
300     \begin{description}
301     \item[{\tt -{}-gofr}] Computes the pair distribution function,
302     \begin{equation*}
303     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
304     \sum_{j \in B} \delta(r - r_{ij}) \rangle
305     \end{equation*}
306     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
307     function. The angle is defined by the intermolecular vector
308     $\vec{r}$ and $z$-axis of DirectionalAtom A,
309     \begin{equation*}
310     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
311     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
312     \theta_{ij} - \cos \theta)\rangle
313     \end{equation*}
314     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
315     function. The angle is defined by the $z$-axes of the two
316     DirectionalAtoms A and B.
317     \begin{equation*}
318     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
319     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
320     \omega_{ij} - \cos \omega)\rangle
321     \end{equation*}
322     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
323     space $\theta, \omega$ defined by the two angles mentioned above.
324     \begin{equation*}
325     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
326     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
327     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
328     \omega)\rangle
329     \end{equation*}
330     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
331     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
332     and {\tt -{}-refsele} must be given to define A's internal
333     coordinate set as the reference frame for the calculation.
334     \end{description}
335    
336     The vectors (and angles) associated with these angular pair
337     distribution functions are most easily seen in the figure below:
338    
339     \begin{figure}
340     \centering
341 tim 2805 \includegraphics[width=3in]{definition.eps}
342 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
343     Any two directional objects (DirectionalAtoms and RigidBodies) have
344     a set of two angles ($\theta$, and $\omega$) between the z-axes of
345     their body-fixed frames.} \label{oopseFig:gofr}
346     \end{figure}
347    
348     The options available for {\tt StaticProps} are as follows:
349     \begin{longtable}[c]{|EFG|}
350     \caption{StaticProps Command-line Options}
351     \\ \hline
352     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
353     \endhead
354     \hline
355     \endfoot
356     -h& {\tt -{}-help} & Print help and exit \\
357     -V& {\tt -{}-version} & Print version and exit \\
358     -i& {\tt -{}-input=filename} & input dump file \\
359     -o& {\tt -{}-output=filename} & output file name \\
360     -n& {\tt -{}-step=INT} & process every n frame (default=`1') \\
361     -r& {\tt -{}-nrbins=INT} & number of bins for distance (default=`100') \\
362     -a& {\tt -{}-nanglebins=INT} & number of bins for cos(angle) (default= `50') \\
363     -l& {\tt -{}-length=DOUBLE} & maximum length (Defaults to 1/2 smallest length of first frame) \\
364     & {\tt -{}-sele1=selection script} & select the first StuntDouble set \\
365     & {\tt -{}-sele2=selection script} & select the second StuntDouble set \\
366     & {\tt -{}-sele3=selection script} & select the third StuntDouble set \\
367     & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
368     & {\tt -{}-molname=STRING} & molecule name \\
369     & {\tt -{}-begin=INT} & begin internal index \\
370     & {\tt -{}-end=INT} & end internal index \\
371     \hline
372     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
373     \hline
374     & {\tt -{}-gofr} & $g(r)$ \\
375     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
376     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
377     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
378     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
379     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
380     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
381     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
382     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
383     \end{longtable}
384    
385     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
386    
387     {\tt DynamicProps} computes time correlation functions from the
388     configurations stored in a dump file. Typical examples of time
389     correlation functions are the mean square displacement and the
390     velocity autocorrelation functions. Once again, the selection
391     syntax can be used to specify the StuntDoubles that will be used for
392     the calculation. A general time correlation function can be thought
393     of as:
394     \begin{equation}
395     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
396     \end{equation}
397     where $\vec{u}_A(t)$ is a vector property associated with an atom of
398     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
399     vector property associated with an atom of type $B$ at a different
400     time $t^{\prime}$. In most autocorrelation functions, the vector
401     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
402     $B$) are identical, and the three calculations built in to {\tt
403     DynamicProps} make these assumptions. It is possible, however, to
404     make simple modifications to the {\tt DynamicProps} code to allow
405     the use of {\it cross} time correlation functions (i.e. with
406     different vectors). The ability to use two selection scripts to
407     select different types of atoms is already present in the code.
408    
409     The options available for DynamicProps are as follows:
410     \begin{longtable}[c]{|EFG|}
411     \caption{DynamicProps Command-line Options}
412     \\ \hline
413     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
414     \endhead
415     \hline
416     \endfoot
417     -h& {\tt -{}-help} & Print help and exit \\
418     -V& {\tt -{}-version} & Print version and exit \\
419     -i& {\tt -{}-input=filename} & input dump file \\
420     -o& {\tt -{}-output=filename} & output file name \\
421     & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
422     & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
423     \hline
424     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
425     \hline
426     -r& {\tt -{}-rcorr} & compute mean square displacement \\
427     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
428     -d& {\tt -{}-dcorr} & compute dipole correlation function
429     \end{longtable}
430    
431     \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}