ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2815
Committed: Wed Jun 7 18:34:05 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 25839 byte(s)
Log Message:
adding architecture and 3-stage processing of staticProps

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121     The Singleton pattern ensures that only one instance of a class is
122     created. All objects that use an instance of that class use the same
123     instance.
124    
125 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
126     The Factory Method pattern is a creational pattern which deals with
127     the problem of creating objects without specifying the exact class
128     of object that will be created. Factory Method solves this problem
129     by defining a separate method for creating the objects, which
130     subclasses can then override to specify the derived type of product
131     that will be created.
132 tim 2685
133 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
134     The purpose of the Visitor Pattern is to encapsulate an operation
135     that you want to perform on the elements of a data structure. In
136     this way, you can change the operation being performed on a
137     structure without the need of changing the classes of the elements
138     that you are operating on.
139 tim 2685
140 tim 2730 \section{\label{appendixSection:concepts}Concepts}
141 tim 2685
142 tim 2730 OOPSE manipulates both traditional atoms as well as some objects
143     that {\it behave like atoms}. These objects can be rigid
144     collections of atoms or atoms which have orientational degrees of
145     freedom. Here is a diagram of the class heirarchy:
146 tim 2688
147 tim 2806 %\begin{figure}
148     %\centering
149     %\includegraphics[width=3in]{heirarchy.eps}
150     %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
151     %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
152     %selection syntax allows the user to select any of the objects that
153     %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
154     %\end{figure}
155 tim 2688
156 tim 2730 \begin{itemize}
157     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
158     integrators and minimizers.
159     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
160     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
161     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
162     DirectionalAtom}s which behaves as a single unit.
163     \end{itemize}
164 tim 2688
165 tim 2815 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
166 tim 2730 own names which are specified in the {\tt .md} file. In contrast,
167     RigidBodies are denoted by their membership and index inside a
168     particular molecule: [MoleculeName]\_RB\_[index] (the contents
169     inside the brackets depend on the specifics of the simulation). The
170     names of rigid bodies are generated automatically. For example, the
171     name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
172    
173     \section{\label{appendixSection:syntax}Syntax of the Select Command}
174    
175     The most general form of the select command is: {\tt select {\it
176 tim 2815 expression}}. This expression represents an arbitrary set of
177     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
178     composed of either name expressions, index expressions, predefined
179     sets, user-defined expressions, comparison operators, within
180     expressions, or logical combinations of the above expression types.
181     Expressions can be combined using parentheses and the Boolean
182     operators.
183 tim 2730
184     \subsection{\label{appendixSection:logical}Logical expressions}
185    
186     The logical operators allow complex queries to be constructed out of
187     simpler ones using the standard boolean connectives {\bf and}, {\bf
188     or}, {\bf not}. Parentheses can be used to alter the precedence of
189     the operators.
190    
191     \begin{center}
192     \begin{tabular}{|ll|}
193     \hline
194     {\bf logical operator} & {\bf equivalent operator} \\
195     \hline
196     and & ``\&'', ``\&\&'' \\
197     or & ``$|$'', ``$||$'', ``,'' \\
198     not & ``!'' \\
199     \hline
200     \end{tabular}
201     \end{center}
202    
203     \subsection{\label{appendixSection:name}Name expressions}
204    
205     \begin{center}
206 tim 2805 \begin{tabular}{|llp{2in}|}
207 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
208     of
209     examples} \\
210     \hline expression without ``.'' & select DMPC & select all
211     StuntDoubles
212     belonging to all DMPC molecules \\
213     & select C* & select all atoms which have atom types beginning with C
214     \\
215     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
216     only select the rigid bodies, and not the atoms belonging to them). \\
217     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
218     O\_TIP3P
219     atoms belonging to TIP3P molecules \\
220     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
221     the first
222     RigidBody in each DMPC molecule \\
223     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
224     molecule \\
225     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
226     select all atoms
227     belonging to all rigid bodies within all DMPC molecules \\
228     \hline
229     \end{tabular}
230     \end{center}
231    
232     \subsection{\label{appendixSection:index}Index expressions}
233    
234     \begin{center}
235     \begin{tabular}{|lp{4in}|}
236     \hline
237     {\bf examples} & {\bf translation of examples} \\
238     \hline
239     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
240     select 20 to 30 & select all of the StuntDoubles belonging to
241     molecules which have global indices between 20 (inclusive) and 30
242     (exclusive) \\
243     \hline
244     \end{tabular}
245     \end{center}
246    
247     \subsection{\label{appendixSection:predefined}Predefined sets}
248    
249     \begin{center}
250     \begin{tabular}{|ll|}
251     \hline
252     {\bf keyword} & {\bf description} \\
253     \hline
254     all & select all StuntDoubles \\
255     none & select none of the StuntDoubles \\
256     \hline
257     \end{tabular}
258     \end{center}
259    
260     \subsection{\label{appendixSection:userdefined}User-defined expressions}
261    
262     Users can define arbitrary terms to represent groups of
263     StuntDoubles, and then use the define terms in select commands. The
264     general form for the define command is: {\bf define {\it term
265 tim 2815 expression}}. Once defined, the user can specify such terms in
266     boolean expressions
267 tim 2730
268     {\tt define SSDWATER SSD or SSD1 or SSDRF}
269    
270     {\tt select SSDWATER}
271    
272     \subsection{\label{appendixSection:comparison}Comparison expressions}
273    
274     StuntDoubles can be selected by using comparision operators on their
275     properties. The general form for the comparison command is: a
276     property name, followed by a comparision operator and then a number.
277    
278     \begin{center}
279     \begin{tabular}{|l|l|}
280     \hline
281     {\bf property} & mass, charge \\
282     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
283     ``$<=$'', ``$!=$'' \\
284     \hline
285     \end{tabular}
286     \end{center}
287    
288     For example, the phrase {\tt select mass > 16.0 and charge < -2}
289 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
290 tim 2730 charges less than -2.
291    
292     \subsection{\label{appendixSection:within}Within expressions}
293    
294     The ``within'' keyword allows the user to select all StuntDoubles
295     within the specified distance (in Angstroms) from a selection,
296     including the selected atom itself. The general form for within
297     selection is: {\tt select within(distance, expression)}
298    
299     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
300     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
301     atoms.
302    
303    
304 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
305 tim 2730
306     \subsection{\label{appendixSection:StaticProps}StaticProps}
307    
308     {\tt StaticProps} can compute properties which are averaged over
309     some or all of the configurations that are contained within a dump
310     file. The most common example of a static property that can be
311     computed is the pair distribution function between atoms of type $A$
312 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
313     also be used to compute the density distributions of other molecules
314     in a reference frame {\it fixed to the body-fixed reference frame}
315     of a selected atom or rigid body.
316 tim 2730
317     There are five seperate radial distribution functions availiable in
318     OOPSE. Since every radial distrbution function invlove the
319     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
320     -{}-sele2} must be specified to tell StaticProps which bodies to
321     include in the calculation.
322    
323     \begin{description}
324     \item[{\tt -{}-gofr}] Computes the pair distribution function,
325     \begin{equation*}
326     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
327     \sum_{j \in B} \delta(r - r_{ij}) \rangle
328     \end{equation*}
329     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
330     function. The angle is defined by the intermolecular vector
331     $\vec{r}$ and $z$-axis of DirectionalAtom A,
332     \begin{equation*}
333     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
334     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
335     \theta_{ij} - \cos \theta)\rangle
336     \end{equation*}
337     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
338     function. The angle is defined by the $z$-axes of the two
339     DirectionalAtoms A and B.
340     \begin{equation*}
341     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
342     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
343     \omega_{ij} - \cos \omega)\rangle
344     \end{equation*}
345     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
346     space $\theta, \omega$ defined by the two angles mentioned above.
347     \begin{equation*}
348     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
349     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
350     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
351     \omega)\rangle
352     \end{equation*}
353     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
354     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
355     and {\tt -{}-refsele} must be given to define A's internal
356     coordinate set as the reference frame for the calculation.
357     \end{description}
358    
359     The vectors (and angles) associated with these angular pair
360     distribution functions are most easily seen in the figure below:
361    
362     \begin{figure}
363     \centering
364 tim 2805 \includegraphics[width=3in]{definition.eps}
365 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
366     Any two directional objects (DirectionalAtoms and RigidBodies) have
367     a set of two angles ($\theta$, and $\omega$) between the z-axes of
368     their body-fixed frames.} \label{oopseFig:gofr}
369     \end{figure}
370    
371 tim 2815 Due to the fact that the selected StuntDoubles from two selections
372     may be overlapped, {\tt StaticProps} performs the calculation in
373     three stages which are illustrated in
374     Fig.~\ref{oopseFig:staticPropsProcess}.
375    
376     \begin{figure}
377     \centering
378     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
379     \caption[A representation of the three-stage correlations in
380     \texttt{StaticProps}]{Three-stage processing in
381     \texttt{StaticProps}. $S_1$ and $S_2$ are the numbers of selected
382     stuntdobules from {\tt -{}-sele1} and {\tt -{}-sele2} respectively,
383     while $C$ is the number of stuntdobules appearing at both sets. The
384     first stage($S_1-C$ and $S_2$) and second stages ($S_1$ and $S_2-C$)
385     are completely non-overlapping. On the contrary, the third stage($C$
386     and $C$) are completely overlapping}
387     \label{oopseFig:staticPropsProcess}
388     \end{figure}
389    
390 tim 2730 The options available for {\tt StaticProps} are as follows:
391     \begin{longtable}[c]{|EFG|}
392     \caption{StaticProps Command-line Options}
393     \\ \hline
394     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
395     \endhead
396     \hline
397     \endfoot
398     -h& {\tt -{}-help} & Print help and exit \\
399     -V& {\tt -{}-version} & Print version and exit \\
400 tim 2809 -i& {\tt -{}-input} & input dump file \\
401     -o& {\tt -{}-output} & output file name \\
402     -n& {\tt -{}-step} & process every n frame (default=`1') \\
403     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
404     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
405     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
406     & {\tt -{}-sele1} & select the first StuntDouble set \\
407     & {\tt -{}-sele2} & select the second StuntDouble set \\
408     & {\tt -{}-sele3} & select the third StuntDouble set \\
409     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
410     & {\tt -{}-molname} & molecule name \\
411     & {\tt -{}-begin} & begin internal index \\
412     & {\tt -{}-end} & end internal index \\
413 tim 2730 \hline
414     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
415     \hline
416     & {\tt -{}-gofr} & $g(r)$ \\
417     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
418     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
419     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
420     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
421     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
422     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
423     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
424     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
425     \end{longtable}
426    
427     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
428    
429     {\tt DynamicProps} computes time correlation functions from the
430     configurations stored in a dump file. Typical examples of time
431     correlation functions are the mean square displacement and the
432     velocity autocorrelation functions. Once again, the selection
433     syntax can be used to specify the StuntDoubles that will be used for
434     the calculation. A general time correlation function can be thought
435     of as:
436     \begin{equation}
437     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
438     \end{equation}
439     where $\vec{u}_A(t)$ is a vector property associated with an atom of
440     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
441     vector property associated with an atom of type $B$ at a different
442     time $t^{\prime}$. In most autocorrelation functions, the vector
443     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
444     $B$) are identical, and the three calculations built in to {\tt
445     DynamicProps} make these assumptions. It is possible, however, to
446     make simple modifications to the {\tt DynamicProps} code to allow
447     the use of {\it cross} time correlation functions (i.e. with
448     different vectors). The ability to use two selection scripts to
449     select different types of atoms is already present in the code.
450    
451 tim 2815 For large simulations, the trajectory files can sometimes reach
452     sizes in excess of several gigabytes. In order to effectively
453     analyze that amount of data. In order to prevent a situation where
454     the program runs out of memory due to large trajectories,
455     \texttt{dynamicProps} will estimate the size of free memory at
456     first, and determine the number of frames in each block, which
457     allows the operating system to load two blocks of data
458     simultaneously without swapping. Upon reading two blocks of the
459     trajectory, \texttt{dynamicProps} will calculate the time
460     correlation within the first block and the cross correlations
461     between the two blocks. This second block is then freed and then
462     incremented and the process repeated until the end of the
463     trajectory. Once the end is reached, the first block is freed then
464     incremented, until all frame pairs have been correlated in time.
465    
466 tim 2730 The options available for DynamicProps are as follows:
467     \begin{longtable}[c]{|EFG|}
468     \caption{DynamicProps Command-line Options}
469     \\ \hline
470     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
471     \endhead
472     \hline
473     \endfoot
474     -h& {\tt -{}-help} & Print help and exit \\
475     -V& {\tt -{}-version} & Print version and exit \\
476 tim 2809 -i& {\tt -{}-input} & input dump file \\
477     -o& {\tt -{}-output} & output file name \\
478     & {\tt -{}-sele1} & select first StuntDouble set \\
479     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
480 tim 2730 \hline
481     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
482     \hline
483     -r& {\tt -{}-rcorr} & compute mean square displacement \\
484     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
485     -d& {\tt -{}-dcorr} & compute dipole correlation function
486     \end{longtable}
487    
488 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
489    
490     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
491    
492     Dump2XYZ can transform an OOPSE dump file into a xyz file which can
493 tim 2815 be opened by other molecular dynamics viewers such as Jmol and
494     VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
495     follows:
496 tim 2811
497    
498     \begin{longtable}[c]{|EFG|}
499     \caption{Dump2XYZ Command-line Options}
500     \\ \hline
501     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
502     \endhead
503     \hline
504     \endfoot
505     -h & {\tt -{}-help} & Print help and exit \\
506     -V & {\tt -{}-version} & Print version and exit \\
507     -i & {\tt -{}-input} & input dump file \\
508     -o & {\tt -{}-output} & output file name \\
509     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
510     -w & {\tt -{}-water} & skip the the waters (default=off) \\
511     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
512     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
513     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
514     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
515     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
516     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
517     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
518     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
519     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
520     converted. \\
521     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
522     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
523     \end{longtable}
524    
525 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
526     The options available for Hydro are as follows:
527 tim 2811 \begin{longtable}[c]{|EFG|}
528     \caption{Hydrodynamics Command-line Options}
529     \\ \hline
530     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
531     \endhead
532     \hline
533     \endfoot
534     -h & {\tt -{}-help} & Print help and exit \\
535     -V & {\tt -{}-version} & Print version and exit \\
536     -i & {\tt -{}-input} & input dump file \\
537     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
538     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
539 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
540 tim 2811 \end{longtable}