ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2821
Committed: Thu Jun 8 06:39:37 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31388 byte(s)
Log Message:
adding pattern

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2821 The Singleton pattern not only provides a mechanism to restrict
122     instantiation of a class to one object, but also provides a global
123     point of access to the object. Currently implemented as a global
124     variable, the logging utility which reports error and warning
125     messages to the console in {\sc OOPSE} is a good candidate for
126     applying the Singleton pattern to avoid the global namespace
127     pollution.Although the singleton pattern can be implemented in
128     various ways to account for different aspects of the software
129     designs, such as lifespan control \textit{etc}, we only use the
130     static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131     is declared as
132     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 tim 2693
134 tim 2821 class IntegratorFactory {
135     public:
136     static IntegratorFactory* getInstance();
137     protected:
138     IntegratorFactory();
139     private:
140     static IntegratorFactory* instance_;
141     };
142     \end{lstlisting}
143     The corresponding implementation is
144     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145    
146     IntegratorFactory::instance_ = NULL;
147    
148     IntegratorFactory* getInstance() {
149     if (instance_ == NULL){
150     instance_ = new IntegratorFactory;
151     }
152     return instance_;
153     }
154     \end{lstlisting}
155     Since constructor is declared as {\tt protected}, a client can not
156     instantiate {\tt IntegratorFactory} directly. Moreover, since the
157     member function {\tt getInstance} serves as the only entry of access
158     to {\tt IntegratorFactory}, this approach fulfills the basic
159     requirement, a single instance. Another consequence of this approach
160     is the automatic destruction since static data are destroyed upon
161     program termination.
162    
163 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
164 tim 2685
165 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
166     with the problem of creating objects without specifying the exact
167     class of object that will be created. Factory Method is typically
168     implemented by delegating the creation operation to the subclasses.
169     \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
170     class IntegratorCreator;
171     class IntegratorFactory {
172     public:
173     typedef std::map<std::string, IntegratorCreator*> CreatorMapType;
174    
175     /**
176     * Registers a creator with a type identifier
177     * @return true if registration is successful, otherwise return false
178     * @id the identification of the concrete object
179     * @creator the object responsible to create the concrete object
180     */
181     bool registerIntegrator(IntegratorCreator* creator);
182    
183     /**
184     * Looks up the type identifier in the internal map. If it is found, it invokes the
185     * corresponding creator for the type identifier and returns its result.
186     * @return a pointer of the concrete object, return NULL if no creator is registed for
187     * creating this concrete object
188     * @param id the identification of the concrete object
189     */
190     Integrator* createIntegrator(const std::string& id, SimInfo* info);
191    
192     private:
193     CreatorMapType creatorMap_;
194     };
195     \end{lstlisting}
196    
197     \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
198     bool IntegratorFactory::unregisterIntegrator(const std::string& id) {
199     return creatorMap_.erase(id) == 1;
200     }
201    
202     Integrator* IntegratorFactory::createIntegrator(const std::string& id, SimInfo* info) {
203     CreatorMapType::iterator i = creatorMap_.find(id);
204     if (i != creatorMap_.end()) {
205     //invoke functor to create object
206     return (i->second)->create(info);
207     } else {
208     return NULL;
209     }
210     }
211     \end{lstlisting}
212    
213     \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
214    
215     class IntegratorCreator {
216     public:
217     IntegratorCreator(const std::string& ident) : ident_(ident) {}
218     virtual ~IntegratorCreator() {}
219     const std::string& getIdent() const { return ident_; }
220    
221     virtual Integrator* create(SimInfo* info) const = 0;
222    
223     private:
224     std::string ident_;
225     };
226    
227     template<class ConcreteIntegrator>
228     class IntegratorBuilder : public IntegratorCreator {
229     public:
230     IntegratorBuilder(const std::string& ident) : IntegratorCreator(ident) {}
231     virtual Integrator* create(SimInfo* info) const {return new ConcreteIntegrator(info);}
232     };
233     \end{lstlisting}
234    
235 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
236 tim 2821
237 tim 2688 The purpose of the Visitor Pattern is to encapsulate an operation
238     that you want to perform on the elements of a data structure. In
239     this way, you can change the operation being performed on a
240 tim 2821 structure without the need of changing the class heirarchy of the
241     elements that you are operating on.
242 tim 2685
243 tim 2821 \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
244     class BaseVisitor{
245     public:
246     virtual void visit(Atom* atom);
247     virtual void visit(DirectionalAtom* datom);
248     virtual void visit(RigidBody* rb);
249     };
250     \end{lstlisting}
251     \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
252     class StuntDouble {
253     public:
254     virtual void accept(BaseVisitor* v) = 0;
255     };
256    
257     class Atom: public StuntDouble {
258     public:
259     virtual void accept{BaseVisitor* v*} {v->visit(this);}
260     };
261    
262     class DirectionalAtom: public Atom {
263     public:
264     virtual void accept{BaseVisitor* v*} {v->visit(this);}
265     };
266    
267     class RigidBody: public StuntDouble {
268     public:
269     virtual void accept{BaseVisitor* v*} {v->visit(this);}
270     };
271    
272     \end{lstlisting}
273 tim 2730 \section{\label{appendixSection:concepts}Concepts}
274 tim 2685
275 tim 2730 OOPSE manipulates both traditional atoms as well as some objects
276     that {\it behave like atoms}. These objects can be rigid
277     collections of atoms or atoms which have orientational degrees of
278     freedom. Here is a diagram of the class heirarchy:
279 tim 2688
280 tim 2806 %\begin{figure}
281     %\centering
282     %\includegraphics[width=3in]{heirarchy.eps}
283     %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
284     %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
285     %selection syntax allows the user to select any of the objects that
286     %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
287     %\end{figure}
288 tim 2688
289 tim 2730 \begin{itemize}
290     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
291     integrators and minimizers.
292     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
293     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
294     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
295     DirectionalAtom}s which behaves as a single unit.
296     \end{itemize}
297 tim 2688
298 tim 2815 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
299 tim 2730 own names which are specified in the {\tt .md} file. In contrast,
300     RigidBodies are denoted by their membership and index inside a
301     particular molecule: [MoleculeName]\_RB\_[index] (the contents
302     inside the brackets depend on the specifics of the simulation). The
303     names of rigid bodies are generated automatically. For example, the
304     name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
305    
306     \section{\label{appendixSection:syntax}Syntax of the Select Command}
307    
308     The most general form of the select command is: {\tt select {\it
309 tim 2815 expression}}. This expression represents an arbitrary set of
310     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
311     composed of either name expressions, index expressions, predefined
312     sets, user-defined expressions, comparison operators, within
313     expressions, or logical combinations of the above expression types.
314     Expressions can be combined using parentheses and the Boolean
315     operators.
316 tim 2730
317     \subsection{\label{appendixSection:logical}Logical expressions}
318    
319     The logical operators allow complex queries to be constructed out of
320     simpler ones using the standard boolean connectives {\bf and}, {\bf
321     or}, {\bf not}. Parentheses can be used to alter the precedence of
322     the operators.
323    
324     \begin{center}
325     \begin{tabular}{|ll|}
326     \hline
327     {\bf logical operator} & {\bf equivalent operator} \\
328     \hline
329     and & ``\&'', ``\&\&'' \\
330     or & ``$|$'', ``$||$'', ``,'' \\
331     not & ``!'' \\
332     \hline
333     \end{tabular}
334     \end{center}
335    
336     \subsection{\label{appendixSection:name}Name expressions}
337    
338     \begin{center}
339 tim 2805 \begin{tabular}{|llp{2in}|}
340 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
341     of
342     examples} \\
343     \hline expression without ``.'' & select DMPC & select all
344     StuntDoubles
345     belonging to all DMPC molecules \\
346     & select C* & select all atoms which have atom types beginning with C
347     \\
348     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
349     only select the rigid bodies, and not the atoms belonging to them). \\
350     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
351     O\_TIP3P
352     atoms belonging to TIP3P molecules \\
353     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
354     the first
355     RigidBody in each DMPC molecule \\
356     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
357     molecule \\
358     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
359     select all atoms
360     belonging to all rigid bodies within all DMPC molecules \\
361     \hline
362     \end{tabular}
363     \end{center}
364    
365     \subsection{\label{appendixSection:index}Index expressions}
366    
367     \begin{center}
368     \begin{tabular}{|lp{4in}|}
369     \hline
370     {\bf examples} & {\bf translation of examples} \\
371     \hline
372     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
373     select 20 to 30 & select all of the StuntDoubles belonging to
374     molecules which have global indices between 20 (inclusive) and 30
375     (exclusive) \\
376     \hline
377     \end{tabular}
378     \end{center}
379    
380     \subsection{\label{appendixSection:predefined}Predefined sets}
381    
382     \begin{center}
383     \begin{tabular}{|ll|}
384     \hline
385     {\bf keyword} & {\bf description} \\
386     \hline
387     all & select all StuntDoubles \\
388     none & select none of the StuntDoubles \\
389     \hline
390     \end{tabular}
391     \end{center}
392    
393     \subsection{\label{appendixSection:userdefined}User-defined expressions}
394    
395     Users can define arbitrary terms to represent groups of
396     StuntDoubles, and then use the define terms in select commands. The
397     general form for the define command is: {\bf define {\it term
398 tim 2815 expression}}. Once defined, the user can specify such terms in
399     boolean expressions
400 tim 2730
401     {\tt define SSDWATER SSD or SSD1 or SSDRF}
402    
403     {\tt select SSDWATER}
404    
405     \subsection{\label{appendixSection:comparison}Comparison expressions}
406    
407     StuntDoubles can be selected by using comparision operators on their
408     properties. The general form for the comparison command is: a
409     property name, followed by a comparision operator and then a number.
410    
411     \begin{center}
412     \begin{tabular}{|l|l|}
413     \hline
414     {\bf property} & mass, charge \\
415     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
416     ``$<=$'', ``$!=$'' \\
417     \hline
418     \end{tabular}
419     \end{center}
420    
421     For example, the phrase {\tt select mass > 16.0 and charge < -2}
422 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
423 tim 2730 charges less than -2.
424    
425     \subsection{\label{appendixSection:within}Within expressions}
426    
427     The ``within'' keyword allows the user to select all StuntDoubles
428     within the specified distance (in Angstroms) from a selection,
429     including the selected atom itself. The general form for within
430     selection is: {\tt select within(distance, expression)}
431    
432     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
433     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
434     atoms.
435    
436    
437 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
438 tim 2730
439     \subsection{\label{appendixSection:StaticProps}StaticProps}
440    
441     {\tt StaticProps} can compute properties which are averaged over
442     some or all of the configurations that are contained within a dump
443     file. The most common example of a static property that can be
444     computed is the pair distribution function between atoms of type $A$
445 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
446     also be used to compute the density distributions of other molecules
447     in a reference frame {\it fixed to the body-fixed reference frame}
448     of a selected atom or rigid body.
449 tim 2730
450     There are five seperate radial distribution functions availiable in
451     OOPSE. Since every radial distrbution function invlove the
452     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
453     -{}-sele2} must be specified to tell StaticProps which bodies to
454     include in the calculation.
455    
456     \begin{description}
457     \item[{\tt -{}-gofr}] Computes the pair distribution function,
458     \begin{equation*}
459     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
460     \sum_{j \in B} \delta(r - r_{ij}) \rangle
461     \end{equation*}
462     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
463     function. The angle is defined by the intermolecular vector
464     $\vec{r}$ and $z$-axis of DirectionalAtom A,
465     \begin{equation*}
466     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
467     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
468     \theta_{ij} - \cos \theta)\rangle
469     \end{equation*}
470     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
471     function. The angle is defined by the $z$-axes of the two
472     DirectionalAtoms A and B.
473     \begin{equation*}
474     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
475     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
476     \omega_{ij} - \cos \omega)\rangle
477     \end{equation*}
478     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
479     space $\theta, \omega$ defined by the two angles mentioned above.
480     \begin{equation*}
481     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
482     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
483     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
484     \omega)\rangle
485     \end{equation*}
486     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
487     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
488     and {\tt -{}-refsele} must be given to define A's internal
489     coordinate set as the reference frame for the calculation.
490     \end{description}
491    
492     The vectors (and angles) associated with these angular pair
493     distribution functions are most easily seen in the figure below:
494    
495     \begin{figure}
496     \centering
497 tim 2805 \includegraphics[width=3in]{definition.eps}
498 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
499     Any two directional objects (DirectionalAtoms and RigidBodies) have
500     a set of two angles ($\theta$, and $\omega$) between the z-axes of
501     their body-fixed frames.} \label{oopseFig:gofr}
502     \end{figure}
503    
504 tim 2815 Due to the fact that the selected StuntDoubles from two selections
505     may be overlapped, {\tt StaticProps} performs the calculation in
506     three stages which are illustrated in
507     Fig.~\ref{oopseFig:staticPropsProcess}.
508    
509     \begin{figure}
510     \centering
511     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
512     \caption[A representation of the three-stage correlations in
513 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
514     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
515     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
516     -{}-sele2} respectively, while $C$ is the number of stuntdobules
517     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
518     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
519     the contrary, the third stage($C$ and $C$) are completely
520     overlapping} \label{oopseFig:staticPropsProcess}
521 tim 2815 \end{figure}
522    
523 tim 2730 The options available for {\tt StaticProps} are as follows:
524     \begin{longtable}[c]{|EFG|}
525     \caption{StaticProps Command-line Options}
526     \\ \hline
527     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
528     \endhead
529     \hline
530     \endfoot
531     -h& {\tt -{}-help} & Print help and exit \\
532     -V& {\tt -{}-version} & Print version and exit \\
533 tim 2809 -i& {\tt -{}-input} & input dump file \\
534     -o& {\tt -{}-output} & output file name \\
535     -n& {\tt -{}-step} & process every n frame (default=`1') \\
536     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
537     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
538     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
539     & {\tt -{}-sele1} & select the first StuntDouble set \\
540     & {\tt -{}-sele2} & select the second StuntDouble set \\
541     & {\tt -{}-sele3} & select the third StuntDouble set \\
542     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
543     & {\tt -{}-molname} & molecule name \\
544     & {\tt -{}-begin} & begin internal index \\
545     & {\tt -{}-end} & end internal index \\
546 tim 2730 \hline
547     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
548     \hline
549     & {\tt -{}-gofr} & $g(r)$ \\
550     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
551     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
552     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
553     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
554     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
555     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
556     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
557     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
558     \end{longtable}
559    
560     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
561    
562     {\tt DynamicProps} computes time correlation functions from the
563     configurations stored in a dump file. Typical examples of time
564     correlation functions are the mean square displacement and the
565     velocity autocorrelation functions. Once again, the selection
566     syntax can be used to specify the StuntDoubles that will be used for
567     the calculation. A general time correlation function can be thought
568     of as:
569     \begin{equation}
570     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
571     \end{equation}
572     where $\vec{u}_A(t)$ is a vector property associated with an atom of
573     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
574     vector property associated with an atom of type $B$ at a different
575     time $t^{\prime}$. In most autocorrelation functions, the vector
576     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
577     $B$) are identical, and the three calculations built in to {\tt
578     DynamicProps} make these assumptions. It is possible, however, to
579     make simple modifications to the {\tt DynamicProps} code to allow
580     the use of {\it cross} time correlation functions (i.e. with
581     different vectors). The ability to use two selection scripts to
582     select different types of atoms is already present in the code.
583    
584 tim 2815 For large simulations, the trajectory files can sometimes reach
585     sizes in excess of several gigabytes. In order to effectively
586     analyze that amount of data. In order to prevent a situation where
587     the program runs out of memory due to large trajectories,
588     \texttt{dynamicProps} will estimate the size of free memory at
589     first, and determine the number of frames in each block, which
590     allows the operating system to load two blocks of data
591     simultaneously without swapping. Upon reading two blocks of the
592     trajectory, \texttt{dynamicProps} will calculate the time
593     correlation within the first block and the cross correlations
594     between the two blocks. This second block is then freed and then
595     incremented and the process repeated until the end of the
596     trajectory. Once the end is reached, the first block is freed then
597     incremented, until all frame pairs have been correlated in time.
598 tim 2816 This process is illustrated in
599     Fig.~\ref{oopseFig:dynamicPropsProcess}.
600 tim 2815
601 tim 2816 \begin{figure}
602     \centering
603     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
604     \caption[A representation of the block correlations in
605     \texttt{dynamicProps}]{This diagram illustrates block correlations
606     processing in \texttt{dynamicProps}. The shaded region represents
607     the self correlation of the block, and the open blocks are read one
608     at a time and the cross correlations between blocks are calculated.}
609     \label{oopseFig:dynamicPropsProcess}
610     \end{figure}
611    
612 tim 2730 The options available for DynamicProps are as follows:
613     \begin{longtable}[c]{|EFG|}
614     \caption{DynamicProps Command-line Options}
615     \\ \hline
616     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
617     \endhead
618     \hline
619     \endfoot
620     -h& {\tt -{}-help} & Print help and exit \\
621     -V& {\tt -{}-version} & Print version and exit \\
622 tim 2809 -i& {\tt -{}-input} & input dump file \\
623     -o& {\tt -{}-output} & output file name \\
624     & {\tt -{}-sele1} & select first StuntDouble set \\
625     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
626 tim 2730 \hline
627     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
628     \hline
629     -r& {\tt -{}-rcorr} & compute mean square displacement \\
630     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
631     -d& {\tt -{}-dcorr} & compute dipole correlation function
632     \end{longtable}
633    
634 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
635    
636     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
637    
638 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
639     which can be opened by other molecular dynamics viewers such as Jmol
640     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
641     as follows:
642 tim 2811
643    
644     \begin{longtable}[c]{|EFG|}
645     \caption{Dump2XYZ Command-line Options}
646     \\ \hline
647     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
648     \endhead
649     \hline
650     \endfoot
651     -h & {\tt -{}-help} & Print help and exit \\
652     -V & {\tt -{}-version} & Print version and exit \\
653     -i & {\tt -{}-input} & input dump file \\
654     -o & {\tt -{}-output} & output file name \\
655     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
656     -w & {\tt -{}-water} & skip the the waters (default=off) \\
657     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
658     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
659     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
660     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
661     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
662     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
663     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
664     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
665     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
666     converted. \\
667     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
668     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
669     \end{longtable}
670    
671 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
672 tim 2821
673     {\tt Hydro} can calculate resistance and diffusion tensors at the
674     center of resistance. Both tensors at the center of diffusion can
675     also be reported from the program, as well as the coordinates for
676     the beads which are used to approximate the arbitrary shapes. The
677     options available for Hydro are as follows:
678 tim 2811 \begin{longtable}[c]{|EFG|}
679     \caption{Hydrodynamics Command-line Options}
680     \\ \hline
681     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
682     \endhead
683     \hline
684     \endfoot
685     -h & {\tt -{}-help} & Print help and exit \\
686     -V & {\tt -{}-version} & Print version and exit \\
687     -i & {\tt -{}-input} & input dump file \\
688     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
689     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
690 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
691 tim 2811 \end{longtable}