ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2822
Committed: Thu Jun 8 07:27:56 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 30907 byte(s)
Log Message:
adding pattern

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2821 The Singleton pattern not only provides a mechanism to restrict
122     instantiation of a class to one object, but also provides a global
123     point of access to the object. Currently implemented as a global
124     variable, the logging utility which reports error and warning
125     messages to the console in {\sc OOPSE} is a good candidate for
126     applying the Singleton pattern to avoid the global namespace
127     pollution.Although the singleton pattern can be implemented in
128     various ways to account for different aspects of the software
129     designs, such as lifespan control \textit{etc}, we only use the
130     static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131     is declared as
132     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 tim 2693
134 tim 2821 class IntegratorFactory {
135     public:
136     static IntegratorFactory* getInstance();
137     protected:
138     IntegratorFactory();
139     private:
140     static IntegratorFactory* instance_;
141     };
142     \end{lstlisting}
143     The corresponding implementation is
144     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145    
146     IntegratorFactory::instance_ = NULL;
147    
148     IntegratorFactory* getInstance() {
149     if (instance_ == NULL){
150     instance_ = new IntegratorFactory;
151     }
152     return instance_;
153     }
154     \end{lstlisting}
155     Since constructor is declared as {\tt protected}, a client can not
156     instantiate {\tt IntegratorFactory} directly. Moreover, since the
157     member function {\tt getInstance} serves as the only entry of access
158     to {\tt IntegratorFactory}, this approach fulfills the basic
159     requirement, a single instance. Another consequence of this approach
160     is the automatic destruction since static data are destroyed upon
161     program termination.
162    
163 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
164 tim 2685
165 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
166     with the problem of creating objects without specifying the exact
167     class of object that will be created. Factory Method is typically
168     implemented by delegating the creation operation to the subclasses.
169 tim 2822
170     Registers a creator with a type identifier. Looks up the type
171     identifier in the internal map. If it is found, it invokes the
172     corresponding creator for the type identifier and returns its
173     result.
174 tim 2821 \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
175     class IntegratorCreator;
176     class IntegratorFactory {
177     public:
178     typedef std::map<std::string, IntegratorCreator*> CreatorMapType;
179    
180     bool registerIntegrator(IntegratorCreator* creator);
181    
182     Integrator* createIntegrator(const std::string& id, SimInfo* info);
183    
184     private:
185     CreatorMapType creatorMap_;
186     };
187     \end{lstlisting}
188    
189     \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
190     bool IntegratorFactory::unregisterIntegrator(const std::string& id) {
191     return creatorMap_.erase(id) == 1;
192     }
193    
194 tim 2822 Integrator*
195     IntegratorFactory::createIntegrator(const std::string& id, SimInfo* info) {
196 tim 2821 CreatorMapType::iterator i = creatorMap_.find(id);
197     if (i != creatorMap_.end()) {
198     //invoke functor to create object
199     return (i->second)->create(info);
200     } else {
201     return NULL;
202     }
203     }
204     \end{lstlisting}
205    
206     \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
207    
208     class IntegratorCreator {
209     public:
210     IntegratorCreator(const std::string& ident) : ident_(ident) {}
211 tim 2822
212 tim 2821 const std::string& getIdent() const { return ident_; }
213    
214     virtual Integrator* create(SimInfo* info) const = 0;
215    
216     private:
217     std::string ident_;
218     };
219    
220     template<class ConcreteIntegrator>
221     class IntegratorBuilder : public IntegratorCreator {
222     public:
223     IntegratorBuilder(const std::string& ident) : IntegratorCreator(ident) {}
224 tim 2822 virtual Integrator* create(SimInfo* info) const {
225     return new ConcreteIntegrator(info);
226     }
227 tim 2821 };
228     \end{lstlisting}
229    
230 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
231 tim 2821
232 tim 2688 The purpose of the Visitor Pattern is to encapsulate an operation
233     that you want to perform on the elements of a data structure. In
234     this way, you can change the operation being performed on a
235 tim 2821 structure without the need of changing the class heirarchy of the
236     elements that you are operating on.
237 tim 2685
238 tim 2821 \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
239     class BaseVisitor{
240     public:
241     virtual void visit(Atom* atom);
242     virtual void visit(DirectionalAtom* datom);
243     virtual void visit(RigidBody* rb);
244     };
245     \end{lstlisting}
246     \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
247     class StuntDouble {
248     public:
249     virtual void accept(BaseVisitor* v) = 0;
250     };
251    
252     class Atom: public StuntDouble {
253     public:
254     virtual void accept{BaseVisitor* v*} {v->visit(this);}
255     };
256    
257     class DirectionalAtom: public Atom {
258     public:
259     virtual void accept{BaseVisitor* v*} {v->visit(this);}
260     };
261    
262     class RigidBody: public StuntDouble {
263     public:
264     virtual void accept{BaseVisitor* v*} {v->visit(this);}
265     };
266    
267     \end{lstlisting}
268 tim 2730 \section{\label{appendixSection:concepts}Concepts}
269 tim 2685
270 tim 2730 OOPSE manipulates both traditional atoms as well as some objects
271     that {\it behave like atoms}. These objects can be rigid
272     collections of atoms or atoms which have orientational degrees of
273     freedom. Here is a diagram of the class heirarchy:
274 tim 2688
275 tim 2806 %\begin{figure}
276     %\centering
277     %\includegraphics[width=3in]{heirarchy.eps}
278     %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
279     %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
280     %selection syntax allows the user to select any of the objects that
281     %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
282     %\end{figure}
283 tim 2688
284 tim 2730 \begin{itemize}
285     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
286     integrators and minimizers.
287     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
288     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
289     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
290     DirectionalAtom}s which behaves as a single unit.
291     \end{itemize}
292 tim 2688
293 tim 2815 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
294 tim 2730 own names which are specified in the {\tt .md} file. In contrast,
295     RigidBodies are denoted by their membership and index inside a
296     particular molecule: [MoleculeName]\_RB\_[index] (the contents
297     inside the brackets depend on the specifics of the simulation). The
298     names of rigid bodies are generated automatically. For example, the
299     name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
300    
301     \section{\label{appendixSection:syntax}Syntax of the Select Command}
302    
303     The most general form of the select command is: {\tt select {\it
304 tim 2815 expression}}. This expression represents an arbitrary set of
305     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
306     composed of either name expressions, index expressions, predefined
307     sets, user-defined expressions, comparison operators, within
308     expressions, or logical combinations of the above expression types.
309     Expressions can be combined using parentheses and the Boolean
310     operators.
311 tim 2730
312     \subsection{\label{appendixSection:logical}Logical expressions}
313    
314     The logical operators allow complex queries to be constructed out of
315     simpler ones using the standard boolean connectives {\bf and}, {\bf
316     or}, {\bf not}. Parentheses can be used to alter the precedence of
317     the operators.
318    
319     \begin{center}
320     \begin{tabular}{|ll|}
321     \hline
322     {\bf logical operator} & {\bf equivalent operator} \\
323     \hline
324     and & ``\&'', ``\&\&'' \\
325     or & ``$|$'', ``$||$'', ``,'' \\
326     not & ``!'' \\
327     \hline
328     \end{tabular}
329     \end{center}
330    
331     \subsection{\label{appendixSection:name}Name expressions}
332    
333     \begin{center}
334 tim 2805 \begin{tabular}{|llp{2in}|}
335 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
336     of
337     examples} \\
338     \hline expression without ``.'' & select DMPC & select all
339     StuntDoubles
340     belonging to all DMPC molecules \\
341     & select C* & select all atoms which have atom types beginning with C
342     \\
343     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
344     only select the rigid bodies, and not the atoms belonging to them). \\
345     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
346     O\_TIP3P
347     atoms belonging to TIP3P molecules \\
348     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
349     the first
350     RigidBody in each DMPC molecule \\
351     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
352     molecule \\
353     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
354     select all atoms
355     belonging to all rigid bodies within all DMPC molecules \\
356     \hline
357     \end{tabular}
358     \end{center}
359    
360     \subsection{\label{appendixSection:index}Index expressions}
361    
362     \begin{center}
363     \begin{tabular}{|lp{4in}|}
364     \hline
365     {\bf examples} & {\bf translation of examples} \\
366     \hline
367     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
368     select 20 to 30 & select all of the StuntDoubles belonging to
369     molecules which have global indices between 20 (inclusive) and 30
370     (exclusive) \\
371     \hline
372     \end{tabular}
373     \end{center}
374    
375     \subsection{\label{appendixSection:predefined}Predefined sets}
376    
377     \begin{center}
378     \begin{tabular}{|ll|}
379     \hline
380     {\bf keyword} & {\bf description} \\
381     \hline
382     all & select all StuntDoubles \\
383     none & select none of the StuntDoubles \\
384     \hline
385     \end{tabular}
386     \end{center}
387    
388     \subsection{\label{appendixSection:userdefined}User-defined expressions}
389    
390     Users can define arbitrary terms to represent groups of
391     StuntDoubles, and then use the define terms in select commands. The
392     general form for the define command is: {\bf define {\it term
393 tim 2815 expression}}. Once defined, the user can specify such terms in
394     boolean expressions
395 tim 2730
396     {\tt define SSDWATER SSD or SSD1 or SSDRF}
397    
398     {\tt select SSDWATER}
399    
400     \subsection{\label{appendixSection:comparison}Comparison expressions}
401    
402     StuntDoubles can be selected by using comparision operators on their
403     properties. The general form for the comparison command is: a
404     property name, followed by a comparision operator and then a number.
405    
406     \begin{center}
407     \begin{tabular}{|l|l|}
408     \hline
409     {\bf property} & mass, charge \\
410     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
411     ``$<=$'', ``$!=$'' \\
412     \hline
413     \end{tabular}
414     \end{center}
415    
416     For example, the phrase {\tt select mass > 16.0 and charge < -2}
417 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
418 tim 2730 charges less than -2.
419    
420     \subsection{\label{appendixSection:within}Within expressions}
421    
422     The ``within'' keyword allows the user to select all StuntDoubles
423     within the specified distance (in Angstroms) from a selection,
424     including the selected atom itself. The general form for within
425     selection is: {\tt select within(distance, expression)}
426    
427     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
428     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
429     atoms.
430    
431    
432 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
433 tim 2730
434     \subsection{\label{appendixSection:StaticProps}StaticProps}
435    
436     {\tt StaticProps} can compute properties which are averaged over
437     some or all of the configurations that are contained within a dump
438     file. The most common example of a static property that can be
439     computed is the pair distribution function between atoms of type $A$
440 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
441     also be used to compute the density distributions of other molecules
442     in a reference frame {\it fixed to the body-fixed reference frame}
443     of a selected atom or rigid body.
444 tim 2730
445     There are five seperate radial distribution functions availiable in
446     OOPSE. Since every radial distrbution function invlove the
447     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
448     -{}-sele2} must be specified to tell StaticProps which bodies to
449     include in the calculation.
450    
451     \begin{description}
452     \item[{\tt -{}-gofr}] Computes the pair distribution function,
453     \begin{equation*}
454     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
455     \sum_{j \in B} \delta(r - r_{ij}) \rangle
456     \end{equation*}
457     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
458     function. The angle is defined by the intermolecular vector
459     $\vec{r}$ and $z$-axis of DirectionalAtom A,
460     \begin{equation*}
461     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
462     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
463     \theta_{ij} - \cos \theta)\rangle
464     \end{equation*}
465     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
466     function. The angle is defined by the $z$-axes of the two
467     DirectionalAtoms A and B.
468     \begin{equation*}
469     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
470     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
471     \omega_{ij} - \cos \omega)\rangle
472     \end{equation*}
473     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
474     space $\theta, \omega$ defined by the two angles mentioned above.
475     \begin{equation*}
476     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
477     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
478     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
479     \omega)\rangle
480     \end{equation*}
481     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
482     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
483     and {\tt -{}-refsele} must be given to define A's internal
484     coordinate set as the reference frame for the calculation.
485     \end{description}
486    
487     The vectors (and angles) associated with these angular pair
488     distribution functions are most easily seen in the figure below:
489    
490     \begin{figure}
491     \centering
492 tim 2805 \includegraphics[width=3in]{definition.eps}
493 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
494     Any two directional objects (DirectionalAtoms and RigidBodies) have
495     a set of two angles ($\theta$, and $\omega$) between the z-axes of
496     their body-fixed frames.} \label{oopseFig:gofr}
497     \end{figure}
498    
499 tim 2815 Due to the fact that the selected StuntDoubles from two selections
500     may be overlapped, {\tt StaticProps} performs the calculation in
501     three stages which are illustrated in
502     Fig.~\ref{oopseFig:staticPropsProcess}.
503    
504     \begin{figure}
505     \centering
506     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
507     \caption[A representation of the three-stage correlations in
508 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
509     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
510     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
511     -{}-sele2} respectively, while $C$ is the number of stuntdobules
512     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
513     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
514     the contrary, the third stage($C$ and $C$) are completely
515     overlapping} \label{oopseFig:staticPropsProcess}
516 tim 2815 \end{figure}
517    
518 tim 2730 The options available for {\tt StaticProps} are as follows:
519     \begin{longtable}[c]{|EFG|}
520     \caption{StaticProps Command-line Options}
521     \\ \hline
522     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
523     \endhead
524     \hline
525     \endfoot
526     -h& {\tt -{}-help} & Print help and exit \\
527     -V& {\tt -{}-version} & Print version and exit \\
528 tim 2809 -i& {\tt -{}-input} & input dump file \\
529     -o& {\tt -{}-output} & output file name \\
530     -n& {\tt -{}-step} & process every n frame (default=`1') \\
531     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
532     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
533     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
534     & {\tt -{}-sele1} & select the first StuntDouble set \\
535     & {\tt -{}-sele2} & select the second StuntDouble set \\
536     & {\tt -{}-sele3} & select the third StuntDouble set \\
537     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
538     & {\tt -{}-molname} & molecule name \\
539     & {\tt -{}-begin} & begin internal index \\
540     & {\tt -{}-end} & end internal index \\
541 tim 2730 \hline
542     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
543     \hline
544     & {\tt -{}-gofr} & $g(r)$ \\
545     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
546     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
547     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
548     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
549     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
550     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
551     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
552     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
553     \end{longtable}
554    
555     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
556    
557     {\tt DynamicProps} computes time correlation functions from the
558     configurations stored in a dump file. Typical examples of time
559     correlation functions are the mean square displacement and the
560     velocity autocorrelation functions. Once again, the selection
561     syntax can be used to specify the StuntDoubles that will be used for
562     the calculation. A general time correlation function can be thought
563     of as:
564     \begin{equation}
565     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
566     \end{equation}
567     where $\vec{u}_A(t)$ is a vector property associated with an atom of
568     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
569     vector property associated with an atom of type $B$ at a different
570     time $t^{\prime}$. In most autocorrelation functions, the vector
571     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
572     $B$) are identical, and the three calculations built in to {\tt
573     DynamicProps} make these assumptions. It is possible, however, to
574     make simple modifications to the {\tt DynamicProps} code to allow
575     the use of {\it cross} time correlation functions (i.e. with
576     different vectors). The ability to use two selection scripts to
577     select different types of atoms is already present in the code.
578    
579 tim 2815 For large simulations, the trajectory files can sometimes reach
580     sizes in excess of several gigabytes. In order to effectively
581     analyze that amount of data. In order to prevent a situation where
582     the program runs out of memory due to large trajectories,
583     \texttt{dynamicProps} will estimate the size of free memory at
584     first, and determine the number of frames in each block, which
585     allows the operating system to load two blocks of data
586     simultaneously without swapping. Upon reading two blocks of the
587     trajectory, \texttt{dynamicProps} will calculate the time
588     correlation within the first block and the cross correlations
589     between the two blocks. This second block is then freed and then
590     incremented and the process repeated until the end of the
591     trajectory. Once the end is reached, the first block is freed then
592     incremented, until all frame pairs have been correlated in time.
593 tim 2816 This process is illustrated in
594     Fig.~\ref{oopseFig:dynamicPropsProcess}.
595 tim 2815
596 tim 2816 \begin{figure}
597     \centering
598     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
599     \caption[A representation of the block correlations in
600     \texttt{dynamicProps}]{This diagram illustrates block correlations
601     processing in \texttt{dynamicProps}. The shaded region represents
602     the self correlation of the block, and the open blocks are read one
603     at a time and the cross correlations between blocks are calculated.}
604     \label{oopseFig:dynamicPropsProcess}
605     \end{figure}
606    
607 tim 2730 The options available for DynamicProps are as follows:
608     \begin{longtable}[c]{|EFG|}
609     \caption{DynamicProps Command-line Options}
610     \\ \hline
611     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
612     \endhead
613     \hline
614     \endfoot
615     -h& {\tt -{}-help} & Print help and exit \\
616     -V& {\tt -{}-version} & Print version and exit \\
617 tim 2809 -i& {\tt -{}-input} & input dump file \\
618     -o& {\tt -{}-output} & output file name \\
619     & {\tt -{}-sele1} & select first StuntDouble set \\
620     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
621 tim 2730 \hline
622     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
623     \hline
624     -r& {\tt -{}-rcorr} & compute mean square displacement \\
625     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
626     -d& {\tt -{}-dcorr} & compute dipole correlation function
627     \end{longtable}
628    
629 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
630    
631     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
632    
633 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
634     which can be opened by other molecular dynamics viewers such as Jmol
635     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
636     as follows:
637 tim 2811
638    
639     \begin{longtable}[c]{|EFG|}
640     \caption{Dump2XYZ Command-line Options}
641     \\ \hline
642     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
643     \endhead
644     \hline
645     \endfoot
646     -h & {\tt -{}-help} & Print help and exit \\
647     -V & {\tt -{}-version} & Print version and exit \\
648     -i & {\tt -{}-input} & input dump file \\
649     -o & {\tt -{}-output} & output file name \\
650     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
651     -w & {\tt -{}-water} & skip the the waters (default=off) \\
652     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
653     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
654     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
655     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
656     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
657     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
658     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
659     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
660     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
661     converted. \\
662     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
663     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
664     \end{longtable}
665    
666 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
667 tim 2821
668     {\tt Hydro} can calculate resistance and diffusion tensors at the
669     center of resistance. Both tensors at the center of diffusion can
670     also be reported from the program, as well as the coordinates for
671     the beads which are used to approximate the arbitrary shapes. The
672     options available for Hydro are as follows:
673 tim 2811 \begin{longtable}[c]{|EFG|}
674     \caption{Hydrodynamics Command-line Options}
675     \\ \hline
676     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
677     \endhead
678     \hline
679     \endfoot
680     -h & {\tt -{}-help} & Print help and exit \\
681     -V & {\tt -{}-version} & Print version and exit \\
682     -i & {\tt -{}-input} & input dump file \\
683     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
684     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
685 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
686 tim 2811 \end{longtable}