ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2824
Committed: Thu Jun 8 15:44:14 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 31571 byte(s)
Log Message:
adding visitor UML structure

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2821 The Singleton pattern not only provides a mechanism to restrict
122     instantiation of a class to one object, but also provides a global
123     point of access to the object. Currently implemented as a global
124     variable, the logging utility which reports error and warning
125     messages to the console in {\sc OOPSE} is a good candidate for
126     applying the Singleton pattern to avoid the global namespace
127     pollution.Although the singleton pattern can be implemented in
128     various ways to account for different aspects of the software
129     designs, such as lifespan control \textit{etc}, we only use the
130     static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131     is declared as
132     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 tim 2693
134 tim 2821 class IntegratorFactory {
135     public:
136     static IntegratorFactory* getInstance();
137     protected:
138     IntegratorFactory();
139     private:
140     static IntegratorFactory* instance_;
141     };
142     \end{lstlisting}
143     The corresponding implementation is
144 tim 2824 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145 tim 2821
146     IntegratorFactory::instance_ = NULL;
147    
148     IntegratorFactory* getInstance() {
149     if (instance_ == NULL){
150     instance_ = new IntegratorFactory;
151     }
152     return instance_;
153     }
154     \end{lstlisting}
155     Since constructor is declared as {\tt protected}, a client can not
156     instantiate {\tt IntegratorFactory} directly. Moreover, since the
157     member function {\tt getInstance} serves as the only entry of access
158     to {\tt IntegratorFactory}, this approach fulfills the basic
159     requirement, a single instance. Another consequence of this approach
160     is the automatic destruction since static data are destroyed upon
161     program termination.
162    
163 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
164 tim 2685
165 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
166     with the problem of creating objects without specifying the exact
167     class of object that will be created. Factory Method is typically
168     implemented by delegating the creation operation to the subclasses.
169 tim 2822
170     Registers a creator with a type identifier. Looks up the type
171     identifier in the internal map. If it is found, it invokes the
172     corresponding creator for the type identifier and returns its
173     result.
174 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
175 tim 2821 class IntegratorCreator;
176     class IntegratorFactory {
177     public:
178 tim 2823 typedef std::map<string, IntegratorCreator*> CreatorMapType;
179 tim 2821
180     bool registerIntegrator(IntegratorCreator* creator);
181    
182 tim 2823 Integrator* createIntegrator(const string& id, SimInfo* info);
183 tim 2821
184     private:
185     CreatorMapType creatorMap_;
186     };
187     \end{lstlisting}
188    
189 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
190 tim 2823 bool IntegratorFactory::unregisterIntegrator(const string& id) {
191 tim 2821 return creatorMap_.erase(id) == 1;
192     }
193    
194 tim 2822 Integrator*
195 tim 2823 IntegratorFactory::createIntegrator(const string& id, SimInfo* info) {
196 tim 2821 CreatorMapType::iterator i = creatorMap_.find(id);
197     if (i != creatorMap_.end()) {
198     //invoke functor to create object
199     return (i->second)->create(info);
200     } else {
201     return NULL;
202     }
203     }
204     \end{lstlisting}
205    
206 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
207 tim 2821
208     class IntegratorCreator {
209     public:
210 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
211 tim 2822
212 tim 2823 const string& getIdent() const { return ident_; }
213 tim 2821
214     virtual Integrator* create(SimInfo* info) const = 0;
215    
216     private:
217 tim 2823 string ident_;
218 tim 2821 };
219    
220     template<class ConcreteIntegrator>
221     class IntegratorBuilder : public IntegratorCreator {
222     public:
223 tim 2823 IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
224 tim 2822 virtual Integrator* create(SimInfo* info) const {
225     return new ConcreteIntegrator(info);
226     }
227 tim 2821 };
228     \end{lstlisting}
229    
230 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
231 tim 2821
232 tim 2688 The purpose of the Visitor Pattern is to encapsulate an operation
233 tim 2824 that you want to perform on the elements. The operation being
234     performed on a structure can be switched without changing the
235     interfaces of the elements. In other words, one can add virtual
236     functions into a set of classes without modifying their interfaces.
237     The UML class diagram of Visitor patten is shown in
238     Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
239     Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
240     extensively.
241 tim 2685
242 tim 2824 \begin{figure}
243     \centering
244     \includegraphics[width=\linewidth]{architecture.eps}
245     \caption[The architecture of {\sc OOPSE}] {Overview of the structure
246     of {\sc OOPSE}} \label{appendixFig:visitorUML}
247     \end{figure}
248    
249     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
250 tim 2821 class BaseVisitor{
251     public:
252     virtual void visit(Atom* atom);
253     virtual void visit(DirectionalAtom* datom);
254     virtual void visit(RigidBody* rb);
255     };
256     \end{lstlisting}
257 tim 2824
258     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
259 tim 2821 class StuntDouble {
260     public:
261     virtual void accept(BaseVisitor* v) = 0;
262     };
263    
264     class Atom: public StuntDouble {
265     public:
266     virtual void accept{BaseVisitor* v*} {v->visit(this);}
267     };
268    
269     class DirectionalAtom: public Atom {
270     public:
271     virtual void accept{BaseVisitor* v*} {v->visit(this);}
272     };
273    
274     class RigidBody: public StuntDouble {
275     public:
276     virtual void accept{BaseVisitor* v*} {v->visit(this);}
277     };
278    
279     \end{lstlisting}
280 tim 2730 \section{\label{appendixSection:concepts}Concepts}
281 tim 2685
282 tim 2730 OOPSE manipulates both traditional atoms as well as some objects
283     that {\it behave like atoms}. These objects can be rigid
284     collections of atoms or atoms which have orientational degrees of
285     freedom. Here is a diagram of the class heirarchy:
286 tim 2688
287 tim 2806 %\begin{figure}
288     %\centering
289     %\includegraphics[width=3in]{heirarchy.eps}
290     %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
291     %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
292     %selection syntax allows the user to select any of the objects that
293     %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
294     %\end{figure}
295 tim 2688
296 tim 2730 \begin{itemize}
297     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
298     integrators and minimizers.
299     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
300     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
301     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
302     DirectionalAtom}s which behaves as a single unit.
303     \end{itemize}
304 tim 2688
305 tim 2815 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
306 tim 2730 own names which are specified in the {\tt .md} file. In contrast,
307     RigidBodies are denoted by their membership and index inside a
308     particular molecule: [MoleculeName]\_RB\_[index] (the contents
309     inside the brackets depend on the specifics of the simulation). The
310     names of rigid bodies are generated automatically. For example, the
311     name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
312    
313     \section{\label{appendixSection:syntax}Syntax of the Select Command}
314    
315     The most general form of the select command is: {\tt select {\it
316 tim 2815 expression}}. This expression represents an arbitrary set of
317     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
318     composed of either name expressions, index expressions, predefined
319     sets, user-defined expressions, comparison operators, within
320     expressions, or logical combinations of the above expression types.
321     Expressions can be combined using parentheses and the Boolean
322     operators.
323 tim 2730
324     \subsection{\label{appendixSection:logical}Logical expressions}
325    
326     The logical operators allow complex queries to be constructed out of
327     simpler ones using the standard boolean connectives {\bf and}, {\bf
328     or}, {\bf not}. Parentheses can be used to alter the precedence of
329     the operators.
330    
331     \begin{center}
332     \begin{tabular}{|ll|}
333     \hline
334     {\bf logical operator} & {\bf equivalent operator} \\
335     \hline
336     and & ``\&'', ``\&\&'' \\
337     or & ``$|$'', ``$||$'', ``,'' \\
338     not & ``!'' \\
339     \hline
340     \end{tabular}
341     \end{center}
342    
343     \subsection{\label{appendixSection:name}Name expressions}
344    
345     \begin{center}
346 tim 2805 \begin{tabular}{|llp{2in}|}
347 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
348     of
349     examples} \\
350     \hline expression without ``.'' & select DMPC & select all
351     StuntDoubles
352     belonging to all DMPC molecules \\
353     & select C* & select all atoms which have atom types beginning with C
354     \\
355     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
356     only select the rigid bodies, and not the atoms belonging to them). \\
357     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
358     O\_TIP3P
359     atoms belonging to TIP3P molecules \\
360     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
361     the first
362     RigidBody in each DMPC molecule \\
363     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
364     molecule \\
365     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
366     select all atoms
367     belonging to all rigid bodies within all DMPC molecules \\
368     \hline
369     \end{tabular}
370     \end{center}
371    
372     \subsection{\label{appendixSection:index}Index expressions}
373    
374     \begin{center}
375     \begin{tabular}{|lp{4in}|}
376     \hline
377     {\bf examples} & {\bf translation of examples} \\
378     \hline
379     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
380     select 20 to 30 & select all of the StuntDoubles belonging to
381     molecules which have global indices between 20 (inclusive) and 30
382     (exclusive) \\
383     \hline
384     \end{tabular}
385     \end{center}
386    
387     \subsection{\label{appendixSection:predefined}Predefined sets}
388    
389     \begin{center}
390     \begin{tabular}{|ll|}
391     \hline
392     {\bf keyword} & {\bf description} \\
393     \hline
394     all & select all StuntDoubles \\
395     none & select none of the StuntDoubles \\
396     \hline
397     \end{tabular}
398     \end{center}
399    
400     \subsection{\label{appendixSection:userdefined}User-defined expressions}
401    
402     Users can define arbitrary terms to represent groups of
403     StuntDoubles, and then use the define terms in select commands. The
404     general form for the define command is: {\bf define {\it term
405 tim 2815 expression}}. Once defined, the user can specify such terms in
406     boolean expressions
407 tim 2730
408     {\tt define SSDWATER SSD or SSD1 or SSDRF}
409    
410     {\tt select SSDWATER}
411    
412     \subsection{\label{appendixSection:comparison}Comparison expressions}
413    
414     StuntDoubles can be selected by using comparision operators on their
415     properties. The general form for the comparison command is: a
416     property name, followed by a comparision operator and then a number.
417    
418     \begin{center}
419     \begin{tabular}{|l|l|}
420     \hline
421     {\bf property} & mass, charge \\
422     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
423     ``$<=$'', ``$!=$'' \\
424     \hline
425     \end{tabular}
426     \end{center}
427    
428     For example, the phrase {\tt select mass > 16.0 and charge < -2}
429 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
430 tim 2730 charges less than -2.
431    
432     \subsection{\label{appendixSection:within}Within expressions}
433    
434     The ``within'' keyword allows the user to select all StuntDoubles
435     within the specified distance (in Angstroms) from a selection,
436     including the selected atom itself. The general form for within
437     selection is: {\tt select within(distance, expression)}
438    
439     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
440     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
441     atoms.
442    
443    
444 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
445 tim 2730
446     \subsection{\label{appendixSection:StaticProps}StaticProps}
447    
448     {\tt StaticProps} can compute properties which are averaged over
449     some or all of the configurations that are contained within a dump
450     file. The most common example of a static property that can be
451     computed is the pair distribution function between atoms of type $A$
452 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
453     also be used to compute the density distributions of other molecules
454     in a reference frame {\it fixed to the body-fixed reference frame}
455     of a selected atom or rigid body.
456 tim 2730
457     There are five seperate radial distribution functions availiable in
458     OOPSE. Since every radial distrbution function invlove the
459     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
460     -{}-sele2} must be specified to tell StaticProps which bodies to
461     include in the calculation.
462    
463     \begin{description}
464     \item[{\tt -{}-gofr}] Computes the pair distribution function,
465     \begin{equation*}
466     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
467     \sum_{j \in B} \delta(r - r_{ij}) \rangle
468     \end{equation*}
469     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
470     function. The angle is defined by the intermolecular vector
471     $\vec{r}$ and $z$-axis of DirectionalAtom A,
472     \begin{equation*}
473     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
474     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
475     \theta_{ij} - \cos \theta)\rangle
476     \end{equation*}
477     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
478     function. The angle is defined by the $z$-axes of the two
479     DirectionalAtoms A and B.
480     \begin{equation*}
481     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
482     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
483     \omega_{ij} - \cos \omega)\rangle
484     \end{equation*}
485     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
486     space $\theta, \omega$ defined by the two angles mentioned above.
487     \begin{equation*}
488     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
489     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
490     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
491     \omega)\rangle
492     \end{equation*}
493     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
494     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
495     and {\tt -{}-refsele} must be given to define A's internal
496     coordinate set as the reference frame for the calculation.
497     \end{description}
498    
499     The vectors (and angles) associated with these angular pair
500     distribution functions are most easily seen in the figure below:
501    
502     \begin{figure}
503     \centering
504 tim 2805 \includegraphics[width=3in]{definition.eps}
505 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
506     Any two directional objects (DirectionalAtoms and RigidBodies) have
507     a set of two angles ($\theta$, and $\omega$) between the z-axes of
508     their body-fixed frames.} \label{oopseFig:gofr}
509     \end{figure}
510    
511 tim 2815 Due to the fact that the selected StuntDoubles from two selections
512     may be overlapped, {\tt StaticProps} performs the calculation in
513     three stages which are illustrated in
514     Fig.~\ref{oopseFig:staticPropsProcess}.
515    
516     \begin{figure}
517     \centering
518     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
519     \caption[A representation of the three-stage correlations in
520 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
521     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
522     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
523     -{}-sele2} respectively, while $C$ is the number of stuntdobules
524     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
525     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
526     the contrary, the third stage($C$ and $C$) are completely
527     overlapping} \label{oopseFig:staticPropsProcess}
528 tim 2815 \end{figure}
529    
530 tim 2730 The options available for {\tt StaticProps} are as follows:
531     \begin{longtable}[c]{|EFG|}
532     \caption{StaticProps Command-line Options}
533     \\ \hline
534     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
535     \endhead
536     \hline
537     \endfoot
538     -h& {\tt -{}-help} & Print help and exit \\
539     -V& {\tt -{}-version} & Print version and exit \\
540 tim 2809 -i& {\tt -{}-input} & input dump file \\
541     -o& {\tt -{}-output} & output file name \\
542     -n& {\tt -{}-step} & process every n frame (default=`1') \\
543     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
544     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
545     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
546     & {\tt -{}-sele1} & select the first StuntDouble set \\
547     & {\tt -{}-sele2} & select the second StuntDouble set \\
548     & {\tt -{}-sele3} & select the third StuntDouble set \\
549     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
550     & {\tt -{}-molname} & molecule name \\
551     & {\tt -{}-begin} & begin internal index \\
552     & {\tt -{}-end} & end internal index \\
553 tim 2730 \hline
554     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
555     \hline
556     & {\tt -{}-gofr} & $g(r)$ \\
557     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
558     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
559     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
560     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
561     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
562     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
563     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
564     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
565     \end{longtable}
566    
567     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
568    
569     {\tt DynamicProps} computes time correlation functions from the
570     configurations stored in a dump file. Typical examples of time
571     correlation functions are the mean square displacement and the
572     velocity autocorrelation functions. Once again, the selection
573     syntax can be used to specify the StuntDoubles that will be used for
574     the calculation. A general time correlation function can be thought
575     of as:
576     \begin{equation}
577     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
578     \end{equation}
579     where $\vec{u}_A(t)$ is a vector property associated with an atom of
580     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
581     vector property associated with an atom of type $B$ at a different
582     time $t^{\prime}$. In most autocorrelation functions, the vector
583     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
584     $B$) are identical, and the three calculations built in to {\tt
585     DynamicProps} make these assumptions. It is possible, however, to
586     make simple modifications to the {\tt DynamicProps} code to allow
587     the use of {\it cross} time correlation functions (i.e. with
588     different vectors). The ability to use two selection scripts to
589     select different types of atoms is already present in the code.
590    
591 tim 2815 For large simulations, the trajectory files can sometimes reach
592     sizes in excess of several gigabytes. In order to effectively
593     analyze that amount of data. In order to prevent a situation where
594     the program runs out of memory due to large trajectories,
595     \texttt{dynamicProps} will estimate the size of free memory at
596     first, and determine the number of frames in each block, which
597     allows the operating system to load two blocks of data
598     simultaneously without swapping. Upon reading two blocks of the
599     trajectory, \texttt{dynamicProps} will calculate the time
600     correlation within the first block and the cross correlations
601     between the two blocks. This second block is then freed and then
602     incremented and the process repeated until the end of the
603     trajectory. Once the end is reached, the first block is freed then
604     incremented, until all frame pairs have been correlated in time.
605 tim 2816 This process is illustrated in
606     Fig.~\ref{oopseFig:dynamicPropsProcess}.
607 tim 2815
608 tim 2816 \begin{figure}
609     \centering
610     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
611     \caption[A representation of the block correlations in
612     \texttt{dynamicProps}]{This diagram illustrates block correlations
613     processing in \texttt{dynamicProps}. The shaded region represents
614     the self correlation of the block, and the open blocks are read one
615     at a time and the cross correlations between blocks are calculated.}
616     \label{oopseFig:dynamicPropsProcess}
617     \end{figure}
618    
619 tim 2730 The options available for DynamicProps are as follows:
620     \begin{longtable}[c]{|EFG|}
621     \caption{DynamicProps Command-line Options}
622     \\ \hline
623     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
624     \endhead
625     \hline
626     \endfoot
627     -h& {\tt -{}-help} & Print help and exit \\
628     -V& {\tt -{}-version} & Print version and exit \\
629 tim 2809 -i& {\tt -{}-input} & input dump file \\
630     -o& {\tt -{}-output} & output file name \\
631     & {\tt -{}-sele1} & select first StuntDouble set \\
632     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
633 tim 2730 \hline
634     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
635     \hline
636     -r& {\tt -{}-rcorr} & compute mean square displacement \\
637     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
638     -d& {\tt -{}-dcorr} & compute dipole correlation function
639     \end{longtable}
640    
641 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
642    
643     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
644    
645 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
646     which can be opened by other molecular dynamics viewers such as Jmol
647     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
648     as follows:
649 tim 2811
650    
651     \begin{longtable}[c]{|EFG|}
652     \caption{Dump2XYZ Command-line Options}
653     \\ \hline
654     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
655     \endhead
656     \hline
657     \endfoot
658     -h & {\tt -{}-help} & Print help and exit \\
659     -V & {\tt -{}-version} & Print version and exit \\
660     -i & {\tt -{}-input} & input dump file \\
661     -o & {\tt -{}-output} & output file name \\
662     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
663     -w & {\tt -{}-water} & skip the the waters (default=off) \\
664     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
665     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
666     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
667     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
668     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
669     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
670     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
671     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
672     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
673     converted. \\
674     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
675     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
676     \end{longtable}
677    
678 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
679 tim 2821
680     {\tt Hydro} can calculate resistance and diffusion tensors at the
681     center of resistance. Both tensors at the center of diffusion can
682     also be reported from the program, as well as the coordinates for
683     the beads which are used to approximate the arbitrary shapes. The
684     options available for Hydro are as follows:
685 tim 2811 \begin{longtable}[c]{|EFG|}
686     \caption{Hydrodynamics Command-line Options}
687     \\ \hline
688     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
689     \endhead
690     \hline
691     \endfoot
692     -h & {\tt -{}-help} & Print help and exit \\
693     -V & {\tt -{}-version} & Print version and exit \\
694     -i & {\tt -{}-input} & input dump file \\
695     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
696     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
697 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
698 tim 2811 \end{longtable}