ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2827
Committed: Thu Jun 8 20:05:53 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 31373 byte(s)
Log Message:
minor format change

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2821 The Singleton pattern not only provides a mechanism to restrict
122     instantiation of a class to one object, but also provides a global
123     point of access to the object. Currently implemented as a global
124     variable, the logging utility which reports error and warning
125     messages to the console in {\sc OOPSE} is a good candidate for
126     applying the Singleton pattern to avoid the global namespace
127     pollution.Although the singleton pattern can be implemented in
128     various ways to account for different aspects of the software
129     designs, such as lifespan control \textit{etc}, we only use the
130     static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131     is declared as
132     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 tim 2693
134 tim 2825 class IntegratorFactory {
135     public:
136     static IntegratorFactory* getInstance();
137 tim 2821 protected:
138     IntegratorFactory();
139     private:
140     static IntegratorFactory* instance_;
141 tim 2825 };
142    
143 tim 2821 \end{lstlisting}
144     The corresponding implementation is
145 tim 2824 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
146 tim 2821
147     IntegratorFactory::instance_ = NULL;
148    
149     IntegratorFactory* getInstance() {
150     if (instance_ == NULL){
151     instance_ = new IntegratorFactory;
152     }
153     return instance_;
154     }
155 tim 2825
156 tim 2821 \end{lstlisting}
157     Since constructor is declared as {\tt protected}, a client can not
158     instantiate {\tt IntegratorFactory} directly. Moreover, since the
159     member function {\tt getInstance} serves as the only entry of access
160     to {\tt IntegratorFactory}, this approach fulfills the basic
161     requirement, a single instance. Another consequence of this approach
162     is the automatic destruction since static data are destroyed upon
163     program termination.
164    
165 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
166 tim 2685
167 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
168     with the problem of creating objects without specifying the exact
169     class of object that will be created. Factory Method is typically
170     implemented by delegating the creation operation to the subclasses.
171 tim 2822
172     Registers a creator with a type identifier. Looks up the type
173     identifier in the internal map. If it is found, it invokes the
174     corresponding creator for the type identifier and returns its
175     result.
176 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
177 tim 2821
178 tim 2825 class IntegratorFactory {
179     public:
180     typedef std::map<string, IntegratorCreator*> CreatorMapType;
181 tim 2821
182 tim 2825 bool registerIntegrator(IntegratorCreator* creator);
183 tim 2821
184 tim 2825 Integrator* createIntegrator(const string& id, SimInfo* info);
185    
186     private:
187     CreatorMapType creatorMap_;
188     };
189    
190 tim 2821 \end{lstlisting}
191    
192 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
193 tim 2825
194     bool IntegratorFactory::unregisterIntegrator(const string& id) {
195     return creatorMap_.erase(id) == 1;
196     }
197    
198     Integrator* IntegratorFactory::createIntegrator(const string& id,
199     SimInfo* info) {
200     CreatorMapType::iterator i = creatorMap_.find(id);
201     if (i != creatorMap_.end()) {
202     return (i->second)->create(info);
203     } else {
204     return NULL;
205 tim 2821 }
206 tim 2825 }
207 tim 2821
208     \end{lstlisting}
209    
210 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
211 tim 2821
212 tim 2825 class IntegratorCreator {
213 tim 2821 public:
214 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
215 tim 2822
216 tim 2823 const string& getIdent() const { return ident_; }
217 tim 2821
218     virtual Integrator* create(SimInfo* info) const = 0;
219    
220     private:
221 tim 2823 string ident_;
222 tim 2825 };
223 tim 2821
224 tim 2825 template<class ConcreteIntegrator>
225     class IntegratorBuilder : public IntegratorCreator {
226 tim 2821 public:
227 tim 2823 IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
228 tim 2822 virtual Integrator* create(SimInfo* info) const {
229     return new ConcreteIntegrator(info);
230     }
231 tim 2825 };
232 tim 2821 \end{lstlisting}
233    
234 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
235 tim 2821
236 tim 2688 The purpose of the Visitor Pattern is to encapsulate an operation
237 tim 2824 that you want to perform on the elements. The operation being
238     performed on a structure can be switched without changing the
239     interfaces of the elements. In other words, one can add virtual
240     functions into a set of classes without modifying their interfaces.
241     The UML class diagram of Visitor patten is shown in
242     Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
243     Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
244     extensively.
245 tim 2685
246 tim 2824 \begin{figure}
247     \centering
248 tim 2826 \includegraphics[width=\linewidth]{visitor.eps}
249 tim 2824 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
250     of {\sc OOPSE}} \label{appendixFig:visitorUML}
251     \end{figure}
252    
253     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
254 tim 2825
255     class BaseVisitor{
256     public:
257     virtual void visit(Atom* atom);
258     virtual void visit(DirectionalAtom* datom);
259     virtual void visit(RigidBody* rb);
260     };
261    
262 tim 2821 \end{lstlisting}
263 tim 2824
264     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
265 tim 2821
266 tim 2825 class StuntDouble {
267     public:
268     virtual void accept(BaseVisitor* v) = 0;
269     };
270 tim 2821
271 tim 2825 class Atom: public StuntDouble {
272     public:
273     virtual void accept{BaseVisitor* v*} {
274     v->visit(this);
275     }
276     };
277 tim 2821
278 tim 2825 class DirectionalAtom: public Atom {
279     public:
280     virtual void accept{BaseVisitor* v*} {
281     v->visit(this);
282     }
283     };
284 tim 2821
285 tim 2825 class RigidBody: public StuntDouble {
286     public:
287     virtual void accept{BaseVisitor* v*} {
288     v->visit(this);
289     }
290     };
291    
292 tim 2821 \end{lstlisting}
293 tim 2730 \section{\label{appendixSection:concepts}Concepts}
294 tim 2685
295 tim 2730 OOPSE manipulates both traditional atoms as well as some objects
296     that {\it behave like atoms}. These objects can be rigid
297     collections of atoms or atoms which have orientational degrees of
298     freedom. Here is a diagram of the class heirarchy:
299 tim 2688
300 tim 2825 \begin{figure}
301     \centering
302     \includegraphics[width=3in]{heirarchy.eps}
303 tim 2827 \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ The
304     class heirarchy of StuntDoubles in {\sc oopse}-3.0.
305 tim 2730 \begin{itemize}
306     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
307     integrators and minimizers.
308     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
309     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
310     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
311     DirectionalAtom}s which behaves as a single unit.
312 tim 2827 \end{itemize}} \label{oopseFig:heirarchy}
313     \end{figure}
314 tim 2688
315 tim 2815 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
316 tim 2730 own names which are specified in the {\tt .md} file. In contrast,
317     RigidBodies are denoted by their membership and index inside a
318     particular molecule: [MoleculeName]\_RB\_[index] (the contents
319     inside the brackets depend on the specifics of the simulation). The
320     names of rigid bodies are generated automatically. For example, the
321     name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
322    
323     \section{\label{appendixSection:syntax}Syntax of the Select Command}
324    
325     The most general form of the select command is: {\tt select {\it
326 tim 2815 expression}}. This expression represents an arbitrary set of
327     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
328     composed of either name expressions, index expressions, predefined
329     sets, user-defined expressions, comparison operators, within
330     expressions, or logical combinations of the above expression types.
331     Expressions can be combined using parentheses and the Boolean
332     operators.
333 tim 2730
334     \subsection{\label{appendixSection:logical}Logical expressions}
335    
336     The logical operators allow complex queries to be constructed out of
337     simpler ones using the standard boolean connectives {\bf and}, {\bf
338     or}, {\bf not}. Parentheses can be used to alter the precedence of
339     the operators.
340    
341     \begin{center}
342     \begin{tabular}{|ll|}
343     \hline
344     {\bf logical operator} & {\bf equivalent operator} \\
345     \hline
346     and & ``\&'', ``\&\&'' \\
347     or & ``$|$'', ``$||$'', ``,'' \\
348     not & ``!'' \\
349     \hline
350     \end{tabular}
351     \end{center}
352    
353     \subsection{\label{appendixSection:name}Name expressions}
354    
355     \begin{center}
356 tim 2805 \begin{tabular}{|llp{2in}|}
357 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
358     of
359     examples} \\
360     \hline expression without ``.'' & select DMPC & select all
361     StuntDoubles
362     belonging to all DMPC molecules \\
363     & select C* & select all atoms which have atom types beginning with C
364     \\
365     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
366     only select the rigid bodies, and not the atoms belonging to them). \\
367     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
368     O\_TIP3P
369     atoms belonging to TIP3P molecules \\
370     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
371     the first
372     RigidBody in each DMPC molecule \\
373     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
374     molecule \\
375     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
376     select all atoms
377     belonging to all rigid bodies within all DMPC molecules \\
378     \hline
379     \end{tabular}
380     \end{center}
381    
382     \subsection{\label{appendixSection:index}Index expressions}
383    
384     \begin{center}
385     \begin{tabular}{|lp{4in}|}
386     \hline
387     {\bf examples} & {\bf translation of examples} \\
388     \hline
389     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
390     select 20 to 30 & select all of the StuntDoubles belonging to
391     molecules which have global indices between 20 (inclusive) and 30
392     (exclusive) \\
393     \hline
394     \end{tabular}
395     \end{center}
396    
397     \subsection{\label{appendixSection:predefined}Predefined sets}
398    
399     \begin{center}
400     \begin{tabular}{|ll|}
401     \hline
402     {\bf keyword} & {\bf description} \\
403     \hline
404     all & select all StuntDoubles \\
405     none & select none of the StuntDoubles \\
406     \hline
407     \end{tabular}
408     \end{center}
409    
410     \subsection{\label{appendixSection:userdefined}User-defined expressions}
411    
412     Users can define arbitrary terms to represent groups of
413     StuntDoubles, and then use the define terms in select commands. The
414     general form for the define command is: {\bf define {\it term
415 tim 2815 expression}}. Once defined, the user can specify such terms in
416     boolean expressions
417 tim 2730
418     {\tt define SSDWATER SSD or SSD1 or SSDRF}
419    
420     {\tt select SSDWATER}
421    
422     \subsection{\label{appendixSection:comparison}Comparison expressions}
423    
424     StuntDoubles can be selected by using comparision operators on their
425     properties. The general form for the comparison command is: a
426     property name, followed by a comparision operator and then a number.
427    
428     \begin{center}
429     \begin{tabular}{|l|l|}
430     \hline
431     {\bf property} & mass, charge \\
432     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
433     ``$<=$'', ``$!=$'' \\
434     \hline
435     \end{tabular}
436     \end{center}
437    
438     For example, the phrase {\tt select mass > 16.0 and charge < -2}
439 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
440 tim 2730 charges less than -2.
441    
442     \subsection{\label{appendixSection:within}Within expressions}
443    
444     The ``within'' keyword allows the user to select all StuntDoubles
445     within the specified distance (in Angstroms) from a selection,
446     including the selected atom itself. The general form for within
447     selection is: {\tt select within(distance, expression)}
448    
449     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
450     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
451     atoms.
452    
453    
454 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
455 tim 2730
456     \subsection{\label{appendixSection:StaticProps}StaticProps}
457    
458     {\tt StaticProps} can compute properties which are averaged over
459     some or all of the configurations that are contained within a dump
460     file. The most common example of a static property that can be
461     computed is the pair distribution function between atoms of type $A$
462 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
463     also be used to compute the density distributions of other molecules
464     in a reference frame {\it fixed to the body-fixed reference frame}
465     of a selected atom or rigid body.
466 tim 2730
467     There are five seperate radial distribution functions availiable in
468     OOPSE. Since every radial distrbution function invlove the
469     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
470     -{}-sele2} must be specified to tell StaticProps which bodies to
471     include in the calculation.
472    
473     \begin{description}
474     \item[{\tt -{}-gofr}] Computes the pair distribution function,
475     \begin{equation*}
476     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
477     \sum_{j \in B} \delta(r - r_{ij}) \rangle
478     \end{equation*}
479     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
480     function. The angle is defined by the intermolecular vector
481     $\vec{r}$ and $z$-axis of DirectionalAtom A,
482     \begin{equation*}
483     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
484     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
485     \theta_{ij} - \cos \theta)\rangle
486     \end{equation*}
487     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
488     function. The angle is defined by the $z$-axes of the two
489     DirectionalAtoms A and B.
490     \begin{equation*}
491     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
492     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
493     \omega_{ij} - \cos \omega)\rangle
494     \end{equation*}
495     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
496     space $\theta, \omega$ defined by the two angles mentioned above.
497     \begin{equation*}
498     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
499     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
500     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
501     \omega)\rangle
502     \end{equation*}
503     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
504     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
505     and {\tt -{}-refsele} must be given to define A's internal
506     coordinate set as the reference frame for the calculation.
507     \end{description}
508    
509     The vectors (and angles) associated with these angular pair
510     distribution functions are most easily seen in the figure below:
511    
512     \begin{figure}
513     \centering
514 tim 2805 \includegraphics[width=3in]{definition.eps}
515 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
516     Any two directional objects (DirectionalAtoms and RigidBodies) have
517     a set of two angles ($\theta$, and $\omega$) between the z-axes of
518     their body-fixed frames.} \label{oopseFig:gofr}
519     \end{figure}
520    
521 tim 2815 Due to the fact that the selected StuntDoubles from two selections
522     may be overlapped, {\tt StaticProps} performs the calculation in
523     three stages which are illustrated in
524     Fig.~\ref{oopseFig:staticPropsProcess}.
525    
526     \begin{figure}
527     \centering
528     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
529     \caption[A representation of the three-stage correlations in
530 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
531     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
532     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
533     -{}-sele2} respectively, while $C$ is the number of stuntdobules
534     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
535     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
536     the contrary, the third stage($C$ and $C$) are completely
537     overlapping} \label{oopseFig:staticPropsProcess}
538 tim 2815 \end{figure}
539    
540 tim 2730 The options available for {\tt StaticProps} are as follows:
541     \begin{longtable}[c]{|EFG|}
542     \caption{StaticProps Command-line Options}
543     \\ \hline
544     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
545     \endhead
546     \hline
547     \endfoot
548     -h& {\tt -{}-help} & Print help and exit \\
549     -V& {\tt -{}-version} & Print version and exit \\
550 tim 2809 -i& {\tt -{}-input} & input dump file \\
551     -o& {\tt -{}-output} & output file name \\
552     -n& {\tt -{}-step} & process every n frame (default=`1') \\
553     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
554     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
555     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
556     & {\tt -{}-sele1} & select the first StuntDouble set \\
557     & {\tt -{}-sele2} & select the second StuntDouble set \\
558     & {\tt -{}-sele3} & select the third StuntDouble set \\
559     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
560     & {\tt -{}-molname} & molecule name \\
561     & {\tt -{}-begin} & begin internal index \\
562     & {\tt -{}-end} & end internal index \\
563 tim 2730 \hline
564     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
565     \hline
566     & {\tt -{}-gofr} & $g(r)$ \\
567     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
568     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
569     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
570     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
571     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
572     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
573     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
574     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
575     \end{longtable}
576    
577     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
578    
579     {\tt DynamicProps} computes time correlation functions from the
580     configurations stored in a dump file. Typical examples of time
581     correlation functions are the mean square displacement and the
582     velocity autocorrelation functions. Once again, the selection
583     syntax can be used to specify the StuntDoubles that will be used for
584     the calculation. A general time correlation function can be thought
585     of as:
586     \begin{equation}
587     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
588     \end{equation}
589     where $\vec{u}_A(t)$ is a vector property associated with an atom of
590     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
591     vector property associated with an atom of type $B$ at a different
592     time $t^{\prime}$. In most autocorrelation functions, the vector
593     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
594     $B$) are identical, and the three calculations built in to {\tt
595     DynamicProps} make these assumptions. It is possible, however, to
596     make simple modifications to the {\tt DynamicProps} code to allow
597     the use of {\it cross} time correlation functions (i.e. with
598     different vectors). The ability to use two selection scripts to
599     select different types of atoms is already present in the code.
600    
601 tim 2815 For large simulations, the trajectory files can sometimes reach
602     sizes in excess of several gigabytes. In order to effectively
603     analyze that amount of data. In order to prevent a situation where
604     the program runs out of memory due to large trajectories,
605     \texttt{dynamicProps} will estimate the size of free memory at
606     first, and determine the number of frames in each block, which
607     allows the operating system to load two blocks of data
608     simultaneously without swapping. Upon reading two blocks of the
609     trajectory, \texttt{dynamicProps} will calculate the time
610     correlation within the first block and the cross correlations
611     between the two blocks. This second block is then freed and then
612     incremented and the process repeated until the end of the
613     trajectory. Once the end is reached, the first block is freed then
614     incremented, until all frame pairs have been correlated in time.
615 tim 2816 This process is illustrated in
616     Fig.~\ref{oopseFig:dynamicPropsProcess}.
617 tim 2815
618 tim 2816 \begin{figure}
619     \centering
620     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
621     \caption[A representation of the block correlations in
622     \texttt{dynamicProps}]{This diagram illustrates block correlations
623     processing in \texttt{dynamicProps}. The shaded region represents
624     the self correlation of the block, and the open blocks are read one
625     at a time and the cross correlations between blocks are calculated.}
626     \label{oopseFig:dynamicPropsProcess}
627     \end{figure}
628    
629 tim 2730 The options available for DynamicProps are as follows:
630     \begin{longtable}[c]{|EFG|}
631     \caption{DynamicProps Command-line Options}
632     \\ \hline
633     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
634     \endhead
635     \hline
636     \endfoot
637     -h& {\tt -{}-help} & Print help and exit \\
638     -V& {\tt -{}-version} & Print version and exit \\
639 tim 2809 -i& {\tt -{}-input} & input dump file \\
640     -o& {\tt -{}-output} & output file name \\
641     & {\tt -{}-sele1} & select first StuntDouble set \\
642     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
643 tim 2730 \hline
644     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
645     \hline
646     -r& {\tt -{}-rcorr} & compute mean square displacement \\
647     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
648     -d& {\tt -{}-dcorr} & compute dipole correlation function
649     \end{longtable}
650    
651 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
652    
653     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
654    
655 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
656     which can be opened by other molecular dynamics viewers such as Jmol
657     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
658     as follows:
659 tim 2811
660    
661     \begin{longtable}[c]{|EFG|}
662     \caption{Dump2XYZ Command-line Options}
663     \\ \hline
664     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
665     \endhead
666     \hline
667     \endfoot
668     -h & {\tt -{}-help} & Print help and exit \\
669     -V & {\tt -{}-version} & Print version and exit \\
670     -i & {\tt -{}-input} & input dump file \\
671     -o & {\tt -{}-output} & output file name \\
672     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
673     -w & {\tt -{}-water} & skip the the waters (default=off) \\
674     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
675     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
676     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
677     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
678     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
679     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
680     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
681     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
682     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
683     converted. \\
684     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
685     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
686     \end{longtable}
687    
688 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
689 tim 2821
690     {\tt Hydro} can calculate resistance and diffusion tensors at the
691     center of resistance. Both tensors at the center of diffusion can
692     also be reported from the program, as well as the coordinates for
693     the beads which are used to approximate the arbitrary shapes. The
694     options available for Hydro are as follows:
695 tim 2811 \begin{longtable}[c]{|EFG|}
696     \caption{Hydrodynamics Command-line Options}
697     \\ \hline
698     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
699     \endhead
700     \hline
701     \endfoot
702     -h & {\tt -{}-help} & Print help and exit \\
703     -V & {\tt -{}-version} & Print version and exit \\
704     -i & {\tt -{}-input} & input dump file \\
705     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
706     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
707 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
708 tim 2811 \end{longtable}