ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2832
Committed: Thu Jun 8 21:09:22 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 31070 byte(s)
Log Message:
minor format change

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2821 The Singleton pattern not only provides a mechanism to restrict
122     instantiation of a class to one object, but also provides a global
123     point of access to the object. Currently implemented as a global
124     variable, the logging utility which reports error and warning
125     messages to the console in {\sc OOPSE} is a good candidate for
126     applying the Singleton pattern to avoid the global namespace
127     pollution.Although the singleton pattern can be implemented in
128     various ways to account for different aspects of the software
129     designs, such as lifespan control \textit{etc}, we only use the
130     static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131     is declared as
132     \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 tim 2693
134 tim 2825 class IntegratorFactory {
135 tim 2832 public:
136     static IntegratorFactory*
137     getInstance();
138     protected:
139     IntegratorFactory();
140     private:
141     static IntegratorFactory* instance_;
142 tim 2825 };
143    
144 tim 2821 \end{lstlisting}
145     The corresponding implementation is
146 tim 2824 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
147 tim 2821
148     IntegratorFactory::instance_ = NULL;
149    
150     IntegratorFactory* getInstance() {
151     if (instance_ == NULL){
152     instance_ = new IntegratorFactory;
153     }
154     return instance_;
155     }
156 tim 2825
157 tim 2821 \end{lstlisting}
158     Since constructor is declared as {\tt protected}, a client can not
159     instantiate {\tt IntegratorFactory} directly. Moreover, since the
160     member function {\tt getInstance} serves as the only entry of access
161     to {\tt IntegratorFactory}, this approach fulfills the basic
162     requirement, a single instance. Another consequence of this approach
163     is the automatic destruction since static data are destroyed upon
164     program termination.
165    
166 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
167 tim 2685
168 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
169     with the problem of creating objects without specifying the exact
170     class of object that will be created. Factory Method is typically
171     implemented by delegating the creation operation to the subclasses.
172 tim 2822
173     Registers a creator with a type identifier. Looks up the type
174     identifier in the internal map. If it is found, it invokes the
175     corresponding creator for the type identifier and returns its
176     result.
177 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
178 tim 2821
179 tim 2825 class IntegratorFactory {
180 tim 2832 public:
181     typedef std::map<string, IntegratorCreator*> CreatorMapType;
182 tim 2821
183 tim 2832 bool registerIntegrator(IntegratorCreator* creator) {
184     return creatorMap_.insert(creator->getIdent(), creator).second;
185     }
186 tim 2821
187 tim 2832 Integrator* createIntegrator(const string& id, SimInfo* info) {
188     Integrator* result = NULL;
189     CreatorMapType::iterator i = creatorMap_.find(id);
190     if (i != creatorMap_.end()) {
191     result = (i->second)->create(info);
192 tim 2831 }
193 tim 2832 return result;
194     }
195 tim 2825
196 tim 2832 private:
197     CreatorMapType creatorMap_;
198 tim 2825 };
199 tim 2821 \end{lstlisting}
200 tim 2831 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)]Souce code of creator classes.},label={appendixScheme:integratorCreator}]
201 tim 2821
202 tim 2825 class IntegratorCreator {
203 tim 2832 public:
204 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
205 tim 2822
206 tim 2823 const string& getIdent() const { return ident_; }
207 tim 2821
208     virtual Integrator* create(SimInfo* info) const = 0;
209    
210 tim 2832 private:
211 tim 2823 string ident_;
212 tim 2825 };
213 tim 2821
214 tim 2832 template<class ConcreteIntegrator> class IntegratorBuilder : public
215     IntegratorCreator {
216     public:
217     IntegratorBuilder(const string& ident)
218     : IntegratorCreator(ident) {}
219     virtual Integrator* create(SimInfo* info) const {
220     return new ConcreteIntegrator(info);
221     }
222 tim 2825 };
223 tim 2821 \end{lstlisting}
224    
225 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
226 tim 2821
227 tim 2688 The purpose of the Visitor Pattern is to encapsulate an operation
228 tim 2824 that you want to perform on the elements. The operation being
229     performed on a structure can be switched without changing the
230     interfaces of the elements. In other words, one can add virtual
231     functions into a set of classes without modifying their interfaces.
232     The UML class diagram of Visitor patten is shown in
233     Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
234     Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
235     extensively.
236 tim 2685
237 tim 2824 \begin{figure}
238     \centering
239 tim 2826 \includegraphics[width=\linewidth]{visitor.eps}
240 tim 2824 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
241     of {\sc OOPSE}} \label{appendixFig:visitorUML}
242     \end{figure}
243    
244     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
245 tim 2825
246     class BaseVisitor{
247 tim 2832 public:
248     virtual void visit(Atom* atom);
249     virtual void visit(DirectionalAtom* datom);
250     virtual void visit(RigidBody* rb);
251 tim 2825 };
252    
253 tim 2821 \end{lstlisting}
254 tim 2824
255     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
256 tim 2821
257 tim 2825 class StuntDouble {
258 tim 2832 public:
259     virtual void accept(BaseVisitor* v) = 0;
260 tim 2825 };
261 tim 2821
262 tim 2825 class Atom: public StuntDouble {
263 tim 2832 public:
264     virtual void accept{BaseVisitor* v*} {
265     v->visit(this);
266     }
267 tim 2825 };
268 tim 2821
269 tim 2825 class DirectionalAtom: public Atom {
270 tim 2832 public:
271     virtual void accept{BaseVisitor* v*} {
272     v->visit(this);
273     }
274 tim 2825 };
275 tim 2821
276 tim 2825 class RigidBody: public StuntDouble {
277 tim 2832 public:
278     virtual void accept{BaseVisitor* v*} {
279     v->visit(this);
280     }
281 tim 2825 };
282    
283 tim 2821 \end{lstlisting}
284 tim 2829
285 tim 2730 \section{\label{appendixSection:concepts}Concepts}
286 tim 2685
287 tim 2829 OOPSE manipulates both traditional atoms as well as some objects
288     that {\it behave like atoms}. These objects can be rigid
289     collections of atoms or atoms which have orientational degrees of
290     freedom. A diagram of the class heirarchy is illustrated in
291     Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
292     DirectionalAtom in {\sc OOPSE} have their own names which are
293     specified in the {\tt .md} file. In contrast, RigidBodies are
294     denoted by their membership and index inside a particular molecule:
295     [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
296     on the specifics of the simulation). The names of rigid bodies are
297     generated automatically. For example, the name of the first rigid
298     body in a DMPC molecule is DMPC\_RB\_0.
299 tim 2828 \begin{figure}
300     \centering
301     \includegraphics[width=\linewidth]{heirarchy.eps}
302 tim 2831 \caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of
303     the class heirarchy.
304 tim 2730 \begin{itemize}
305     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
306     integrators and minimizers.
307     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
308     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
309     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
310     DirectionalAtom}s which behaves as a single unit.
311 tim 2828 \end{itemize}
312 tim 2829 } \label{oopseFig:heirarchy}
313     \end{figure}
314 tim 2688
315 tim 2730 \section{\label{appendixSection:syntax}Syntax of the Select Command}
316    
317     The most general form of the select command is: {\tt select {\it
318 tim 2815 expression}}. This expression represents an arbitrary set of
319     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
320     composed of either name expressions, index expressions, predefined
321     sets, user-defined expressions, comparison operators, within
322     expressions, or logical combinations of the above expression types.
323     Expressions can be combined using parentheses and the Boolean
324     operators.
325 tim 2730
326     \subsection{\label{appendixSection:logical}Logical expressions}
327    
328     The logical operators allow complex queries to be constructed out of
329     simpler ones using the standard boolean connectives {\bf and}, {\bf
330     or}, {\bf not}. Parentheses can be used to alter the precedence of
331     the operators.
332    
333     \begin{center}
334     \begin{tabular}{|ll|}
335     \hline
336     {\bf logical operator} & {\bf equivalent operator} \\
337     \hline
338     and & ``\&'', ``\&\&'' \\
339     or & ``$|$'', ``$||$'', ``,'' \\
340     not & ``!'' \\
341     \hline
342     \end{tabular}
343     \end{center}
344    
345     \subsection{\label{appendixSection:name}Name expressions}
346    
347     \begin{center}
348 tim 2805 \begin{tabular}{|llp{2in}|}
349 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
350     of
351     examples} \\
352     \hline expression without ``.'' & select DMPC & select all
353     StuntDoubles
354     belonging to all DMPC molecules \\
355     & select C* & select all atoms which have atom types beginning with C
356     \\
357     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
358     only select the rigid bodies, and not the atoms belonging to them). \\
359     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
360     O\_TIP3P
361     atoms belonging to TIP3P molecules \\
362     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
363     the first
364     RigidBody in each DMPC molecule \\
365     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
366     molecule \\
367     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
368     select all atoms
369     belonging to all rigid bodies within all DMPC molecules \\
370     \hline
371     \end{tabular}
372     \end{center}
373    
374     \subsection{\label{appendixSection:index}Index expressions}
375    
376     \begin{center}
377     \begin{tabular}{|lp{4in}|}
378     \hline
379     {\bf examples} & {\bf translation of examples} \\
380     \hline
381     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
382     select 20 to 30 & select all of the StuntDoubles belonging to
383     molecules which have global indices between 20 (inclusive) and 30
384     (exclusive) \\
385     \hline
386     \end{tabular}
387     \end{center}
388    
389     \subsection{\label{appendixSection:predefined}Predefined sets}
390    
391     \begin{center}
392     \begin{tabular}{|ll|}
393     \hline
394     {\bf keyword} & {\bf description} \\
395     \hline
396     all & select all StuntDoubles \\
397     none & select none of the StuntDoubles \\
398     \hline
399     \end{tabular}
400     \end{center}
401    
402     \subsection{\label{appendixSection:userdefined}User-defined expressions}
403    
404     Users can define arbitrary terms to represent groups of
405     StuntDoubles, and then use the define terms in select commands. The
406     general form for the define command is: {\bf define {\it term
407 tim 2815 expression}}. Once defined, the user can specify such terms in
408     boolean expressions
409 tim 2730
410     {\tt define SSDWATER SSD or SSD1 or SSDRF}
411    
412     {\tt select SSDWATER}
413    
414     \subsection{\label{appendixSection:comparison}Comparison expressions}
415    
416     StuntDoubles can be selected by using comparision operators on their
417     properties. The general form for the comparison command is: a
418     property name, followed by a comparision operator and then a number.
419    
420     \begin{center}
421     \begin{tabular}{|l|l|}
422     \hline
423     {\bf property} & mass, charge \\
424     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
425     ``$<=$'', ``$!=$'' \\
426     \hline
427     \end{tabular}
428     \end{center}
429    
430     For example, the phrase {\tt select mass > 16.0 and charge < -2}
431 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
432 tim 2730 charges less than -2.
433    
434     \subsection{\label{appendixSection:within}Within expressions}
435    
436     The ``within'' keyword allows the user to select all StuntDoubles
437     within the specified distance (in Angstroms) from a selection,
438     including the selected atom itself. The general form for within
439     selection is: {\tt select within(distance, expression)}
440    
441     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
442     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
443     atoms.
444    
445    
446 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
447 tim 2730
448     \subsection{\label{appendixSection:StaticProps}StaticProps}
449    
450     {\tt StaticProps} can compute properties which are averaged over
451     some or all of the configurations that are contained within a dump
452     file. The most common example of a static property that can be
453     computed is the pair distribution function between atoms of type $A$
454 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
455     also be used to compute the density distributions of other molecules
456     in a reference frame {\it fixed to the body-fixed reference frame}
457     of a selected atom or rigid body.
458 tim 2730
459     There are five seperate radial distribution functions availiable in
460     OOPSE. Since every radial distrbution function invlove the
461     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
462     -{}-sele2} must be specified to tell StaticProps which bodies to
463     include in the calculation.
464    
465     \begin{description}
466     \item[{\tt -{}-gofr}] Computes the pair distribution function,
467     \begin{equation*}
468     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
469     \sum_{j \in B} \delta(r - r_{ij}) \rangle
470     \end{equation*}
471     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
472     function. The angle is defined by the intermolecular vector
473     $\vec{r}$ and $z$-axis of DirectionalAtom A,
474     \begin{equation*}
475     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
476     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
477     \theta_{ij} - \cos \theta)\rangle
478     \end{equation*}
479     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
480     function. The angle is defined by the $z$-axes of the two
481     DirectionalAtoms A and B.
482     \begin{equation*}
483     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
484     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
485     \omega_{ij} - \cos \omega)\rangle
486     \end{equation*}
487     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
488     space $\theta, \omega$ defined by the two angles mentioned above.
489     \begin{equation*}
490     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
491     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
492     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
493     \omega)\rangle
494     \end{equation*}
495     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
496     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
497     and {\tt -{}-refsele} must be given to define A's internal
498     coordinate set as the reference frame for the calculation.
499     \end{description}
500    
501     The vectors (and angles) associated with these angular pair
502     distribution functions are most easily seen in the figure below:
503    
504     \begin{figure}
505     \centering
506 tim 2805 \includegraphics[width=3in]{definition.eps}
507 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
508     Any two directional objects (DirectionalAtoms and RigidBodies) have
509     a set of two angles ($\theta$, and $\omega$) between the z-axes of
510     their body-fixed frames.} \label{oopseFig:gofr}
511     \end{figure}
512    
513 tim 2815 Due to the fact that the selected StuntDoubles from two selections
514     may be overlapped, {\tt StaticProps} performs the calculation in
515     three stages which are illustrated in
516     Fig.~\ref{oopseFig:staticPropsProcess}.
517    
518     \begin{figure}
519     \centering
520     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
521     \caption[A representation of the three-stage correlations in
522 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
523     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
524     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
525     -{}-sele2} respectively, while $C$ is the number of stuntdobules
526     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
527     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
528     the contrary, the third stage($C$ and $C$) are completely
529     overlapping} \label{oopseFig:staticPropsProcess}
530 tim 2815 \end{figure}
531    
532 tim 2730 The options available for {\tt StaticProps} are as follows:
533     \begin{longtable}[c]{|EFG|}
534     \caption{StaticProps Command-line Options}
535     \\ \hline
536     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
537     \endhead
538     \hline
539     \endfoot
540     -h& {\tt -{}-help} & Print help and exit \\
541     -V& {\tt -{}-version} & Print version and exit \\
542 tim 2809 -i& {\tt -{}-input} & input dump file \\
543     -o& {\tt -{}-output} & output file name \\
544     -n& {\tt -{}-step} & process every n frame (default=`1') \\
545     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
546     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
547     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
548     & {\tt -{}-sele1} & select the first StuntDouble set \\
549     & {\tt -{}-sele2} & select the second StuntDouble set \\
550     & {\tt -{}-sele3} & select the third StuntDouble set \\
551     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
552     & {\tt -{}-molname} & molecule name \\
553     & {\tt -{}-begin} & begin internal index \\
554     & {\tt -{}-end} & end internal index \\
555 tim 2730 \hline
556     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
557     \hline
558     & {\tt -{}-gofr} & $g(r)$ \\
559     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
560     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
561     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
562     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
563     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
564     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
565     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
566     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
567     \end{longtable}
568    
569     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
570    
571     {\tt DynamicProps} computes time correlation functions from the
572     configurations stored in a dump file. Typical examples of time
573     correlation functions are the mean square displacement and the
574     velocity autocorrelation functions. Once again, the selection
575     syntax can be used to specify the StuntDoubles that will be used for
576     the calculation. A general time correlation function can be thought
577     of as:
578     \begin{equation}
579     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
580     \end{equation}
581     where $\vec{u}_A(t)$ is a vector property associated with an atom of
582     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
583     vector property associated with an atom of type $B$ at a different
584     time $t^{\prime}$. In most autocorrelation functions, the vector
585     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
586     $B$) are identical, and the three calculations built in to {\tt
587     DynamicProps} make these assumptions. It is possible, however, to
588     make simple modifications to the {\tt DynamicProps} code to allow
589     the use of {\it cross} time correlation functions (i.e. with
590     different vectors). The ability to use two selection scripts to
591     select different types of atoms is already present in the code.
592    
593 tim 2815 For large simulations, the trajectory files can sometimes reach
594     sizes in excess of several gigabytes. In order to effectively
595     analyze that amount of data. In order to prevent a situation where
596     the program runs out of memory due to large trajectories,
597     \texttt{dynamicProps} will estimate the size of free memory at
598     first, and determine the number of frames in each block, which
599     allows the operating system to load two blocks of data
600     simultaneously without swapping. Upon reading two blocks of the
601     trajectory, \texttt{dynamicProps} will calculate the time
602     correlation within the first block and the cross correlations
603     between the two blocks. This second block is then freed and then
604     incremented and the process repeated until the end of the
605     trajectory. Once the end is reached, the first block is freed then
606     incremented, until all frame pairs have been correlated in time.
607 tim 2816 This process is illustrated in
608     Fig.~\ref{oopseFig:dynamicPropsProcess}.
609 tim 2815
610 tim 2816 \begin{figure}
611     \centering
612     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
613     \caption[A representation of the block correlations in
614     \texttt{dynamicProps}]{This diagram illustrates block correlations
615     processing in \texttt{dynamicProps}. The shaded region represents
616     the self correlation of the block, and the open blocks are read one
617     at a time and the cross correlations between blocks are calculated.}
618     \label{oopseFig:dynamicPropsProcess}
619     \end{figure}
620    
621 tim 2730 The options available for DynamicProps are as follows:
622     \begin{longtable}[c]{|EFG|}
623     \caption{DynamicProps Command-line Options}
624     \\ \hline
625     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
626     \endhead
627     \hline
628     \endfoot
629     -h& {\tt -{}-help} & Print help and exit \\
630     -V& {\tt -{}-version} & Print version and exit \\
631 tim 2809 -i& {\tt -{}-input} & input dump file \\
632     -o& {\tt -{}-output} & output file name \\
633     & {\tt -{}-sele1} & select first StuntDouble set \\
634     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
635 tim 2730 \hline
636     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
637     \hline
638     -r& {\tt -{}-rcorr} & compute mean square displacement \\
639     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
640     -d& {\tt -{}-dcorr} & compute dipole correlation function
641     \end{longtable}
642    
643 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
644    
645     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
646    
647 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
648     which can be opened by other molecular dynamics viewers such as Jmol
649     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
650     as follows:
651 tim 2811
652    
653     \begin{longtable}[c]{|EFG|}
654     \caption{Dump2XYZ Command-line Options}
655     \\ \hline
656     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
657     \endhead
658     \hline
659     \endfoot
660     -h & {\tt -{}-help} & Print help and exit \\
661     -V & {\tt -{}-version} & Print version and exit \\
662     -i & {\tt -{}-input} & input dump file \\
663     -o & {\tt -{}-output} & output file name \\
664     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
665     -w & {\tt -{}-water} & skip the the waters (default=off) \\
666     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
667     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
668     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
669     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
670     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
671     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
672     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
673     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
674     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
675     converted. \\
676     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
677     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
678     \end{longtable}
679    
680 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
681 tim 2821
682     {\tt Hydro} can calculate resistance and diffusion tensors at the
683     center of resistance. Both tensors at the center of diffusion can
684     also be reported from the program, as well as the coordinates for
685     the beads which are used to approximate the arbitrary shapes. The
686     options available for Hydro are as follows:
687 tim 2811 \begin{longtable}[c]{|EFG|}
688     \caption{Hydrodynamics Command-line Options}
689     \\ \hline
690     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
691     \endhead
692     \hline
693     \endfoot
694     -h & {\tt -{}-help} & Print help and exit \\
695     -V & {\tt -{}-version} & Print version and exit \\
696     -i & {\tt -{}-input} & input dump file \\
697     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
698     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
699 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
700 tim 2811 \end{longtable}