ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2835
Committed: Thu Jun 8 22:39:54 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 31997 byte(s)
Log Message:
minor format change

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2821 The Singleton pattern not only provides a mechanism to restrict
122     instantiation of a class to one object, but also provides a global
123     point of access to the object. Currently implemented as a global
124     variable, the logging utility which reports error and warning
125     messages to the console in {\sc OOPSE} is a good candidate for
126     applying the Singleton pattern to avoid the global namespace
127     pollution.Although the singleton pattern can be implemented in
128     various ways to account for different aspects of the software
129     designs, such as lifespan control \textit{etc}, we only use the
130     static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131     is declared as
132 tim 2835 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
133 tim 2693
134 tim 2825 class IntegratorFactory {
135 tim 2832 public:
136     static IntegratorFactory*
137     getInstance();
138     protected:
139     IntegratorFactory();
140     private:
141     static IntegratorFactory* instance_;
142 tim 2825 };
143    
144 tim 2821 \end{lstlisting}
145     The corresponding implementation is
146 tim 2835 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
147 tim 2821
148     IntegratorFactory::instance_ = NULL;
149    
150     IntegratorFactory* getInstance() {
151     if (instance_ == NULL){
152     instance_ = new IntegratorFactory;
153     }
154     return instance_;
155     }
156 tim 2825
157 tim 2821 \end{lstlisting}
158     Since constructor is declared as {\tt protected}, a client can not
159     instantiate {\tt IntegratorFactory} directly. Moreover, since the
160     member function {\tt getInstance} serves as the only entry of access
161     to {\tt IntegratorFactory}, this approach fulfills the basic
162     requirement, a single instance. Another consequence of this approach
163     is the automatic destruction since static data are destroyed upon
164     program termination.
165    
166 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
167 tim 2685
168 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
169     with the problem of creating objects without specifying the exact
170     class of object that will be created. Factory Method is typically
171     implemented by delegating the creation operation to the subclasses.
172 tim 2835 {\tt Integrator} class Parameterized Factory pattern where factory
173     method ({\tt createIntegrator} member function) creates products
174     based on the identifier (see
175     List.~\ref{appendixScheme:factoryDeclaration}). If the identifier
176     has been already registered, the factory method will invoke the
177     corresponding creator (see List.~\ref{integratorCreator}) which
178     utilizes the modern C++ template technique to avoid subclassing.
179     \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of {\tt IntegratorFactory} class.},label={appendixScheme:factoryDeclaration}]
180 tim 2822
181 tim 2825 class IntegratorFactory {
182 tim 2832 public:
183     typedef std::map<string, IntegratorCreator*> CreatorMapType;
184 tim 2821
185 tim 2832 bool registerIntegrator(IntegratorCreator* creator) {
186     return creatorMap_.insert(creator->getIdent(), creator).second;
187     }
188 tim 2821
189 tim 2832 Integrator* createIntegrator(const string& id, SimInfo* info) {
190     Integrator* result = NULL;
191     CreatorMapType::iterator i = creatorMap_.find(id);
192     if (i != creatorMap_.end()) {
193     result = (i->second)->create(info);
194 tim 2831 }
195 tim 2832 return result;
196     }
197 tim 2825
198 tim 2832 private:
199     CreatorMapType creatorMap_;
200 tim 2825 };
201 tim 2821 \end{lstlisting}
202 tim 2835 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
203 tim 2821
204 tim 2825 class IntegratorCreator {
205 tim 2832 public:
206 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
207 tim 2822
208 tim 2823 const string& getIdent() const { return ident_; }
209 tim 2821
210     virtual Integrator* create(SimInfo* info) const = 0;
211    
212 tim 2832 private:
213 tim 2823 string ident_;
214 tim 2825 };
215 tim 2821
216 tim 2833 template<class ConcreteIntegrator>
217     class IntegratorBuilder : public IntegratorCreator {
218 tim 2832 public:
219     IntegratorBuilder(const string& ident)
220 tim 2833 : IntegratorCreator(ident) {}
221 tim 2832 virtual Integrator* create(SimInfo* info) const {
222     return new ConcreteIntegrator(info);
223     }
224 tim 2825 };
225 tim 2821 \end{lstlisting}
226    
227 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
228 tim 2821
229 tim 2688 The purpose of the Visitor Pattern is to encapsulate an operation
230 tim 2824 that you want to perform on the elements. The operation being
231     performed on a structure can be switched without changing the
232 tim 2835 interfaces of the elements. In other words, one can add virtual
233 tim 2824 functions into a set of classes without modifying their interfaces.
234 tim 2835 Fig.~\ref{appendixFig:visitorUML} demonstrates the structure of
235     Visitor pattern which is used extensively in {\tt Dump2XYZ}. In
236     order to convert an OOPSE dump file, a series of distinct and
237     unrelated operations are performed on different StuntDoubles.
238     Visitor allows one to keep related operations together by packing
239     them into one class. {\tt BaseAtomVisitor} is a typical example of
240     visitor in {\tt Dump2XYZ} program{see
241     List.~\ref{appendixScheme:visitor}}. In contrast to the operations,
242     the object structure or element classes rarely change(See
243     Fig.~\ref{oopseFig:heirarchy} and
244     List.~\ref{appendixScheme:element}).
245 tim 2685
246 tim 2835
247 tim 2824 \begin{figure}
248     \centering
249 tim 2826 \includegraphics[width=\linewidth]{visitor.eps}
250 tim 2835 \caption[The UML class diagram of Visitor patten] {The UML class
251     diagram of Visitor patten.} \label{appendixFig:visitorUML}
252 tim 2824 \end{figure}
253    
254     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
255 tim 2825
256     class BaseVisitor{
257 tim 2832 public:
258     virtual void visit(Atom* atom);
259     virtual void visit(DirectionalAtom* datom);
260     virtual void visit(RigidBody* rb);
261 tim 2825 };
262    
263 tim 2835 class BaseAtomVisitor:public BaseVisitor{ public:
264     virtual void visit(Atom* atom);
265     virtual void visit(DirectionalAtom* datom);
266     virtual void visit(RigidBody* rb);
267     };
268    
269 tim 2821 \end{lstlisting}
270 tim 2824
271     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
272 tim 2821
273 tim 2825 class StuntDouble {
274 tim 2832 public:
275     virtual void accept(BaseVisitor* v) = 0;
276 tim 2825 };
277 tim 2821
278 tim 2825 class Atom: public StuntDouble {
279 tim 2832 public:
280     virtual void accept{BaseVisitor* v*} {
281     v->visit(this);
282     }
283 tim 2825 };
284 tim 2821
285 tim 2825 class DirectionalAtom: public Atom {
286 tim 2832 public:
287     virtual void accept{BaseVisitor* v*} {
288     v->visit(this);
289     }
290 tim 2825 };
291 tim 2821
292 tim 2825 class RigidBody: public StuntDouble {
293 tim 2832 public:
294     virtual void accept{BaseVisitor* v*} {
295     v->visit(this);
296     }
297 tim 2825 };
298    
299 tim 2821 \end{lstlisting}
300 tim 2829
301 tim 2730 \section{\label{appendixSection:concepts}Concepts}
302 tim 2685
303 tim 2829 OOPSE manipulates both traditional atoms as well as some objects
304     that {\it behave like atoms}. These objects can be rigid
305     collections of atoms or atoms which have orientational degrees of
306     freedom. A diagram of the class heirarchy is illustrated in
307     Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
308     DirectionalAtom in {\sc OOPSE} have their own names which are
309     specified in the {\tt .md} file. In contrast, RigidBodies are
310     denoted by their membership and index inside a particular molecule:
311     [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
312     on the specifics of the simulation). The names of rigid bodies are
313     generated automatically. For example, the name of the first rigid
314     body in a DMPC molecule is DMPC\_RB\_0.
315 tim 2835 %\begin{figure}
316     %\centering
317     %\includegraphics[width=\linewidth]{heirarchy.eps}
318     %\caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of
319     %the class heirarchy.
320     %\begin{itemize}
321     %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
322     %integrators and minimizers.
323     %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
324     %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
325     %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
326     %DirectionalAtom}s which behaves as a single unit.
327     %\end{itemize}
328     %} \label{oopseFig:heirarchy}
329     %\end{figure}
330 tim 2688
331 tim 2730 \section{\label{appendixSection:syntax}Syntax of the Select Command}
332    
333     The most general form of the select command is: {\tt select {\it
334 tim 2815 expression}}. This expression represents an arbitrary set of
335     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
336     composed of either name expressions, index expressions, predefined
337     sets, user-defined expressions, comparison operators, within
338     expressions, or logical combinations of the above expression types.
339     Expressions can be combined using parentheses and the Boolean
340     operators.
341 tim 2730
342     \subsection{\label{appendixSection:logical}Logical expressions}
343    
344     The logical operators allow complex queries to be constructed out of
345     simpler ones using the standard boolean connectives {\bf and}, {\bf
346     or}, {\bf not}. Parentheses can be used to alter the precedence of
347     the operators.
348    
349     \begin{center}
350     \begin{tabular}{|ll|}
351     \hline
352     {\bf logical operator} & {\bf equivalent operator} \\
353     \hline
354     and & ``\&'', ``\&\&'' \\
355     or & ``$|$'', ``$||$'', ``,'' \\
356     not & ``!'' \\
357     \hline
358     \end{tabular}
359     \end{center}
360    
361     \subsection{\label{appendixSection:name}Name expressions}
362    
363     \begin{center}
364 tim 2805 \begin{tabular}{|llp{2in}|}
365 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
366     of
367     examples} \\
368     \hline expression without ``.'' & select DMPC & select all
369     StuntDoubles
370     belonging to all DMPC molecules \\
371     & select C* & select all atoms which have atom types beginning with C
372     \\
373     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
374     only select the rigid bodies, and not the atoms belonging to them). \\
375     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
376     O\_TIP3P
377     atoms belonging to TIP3P molecules \\
378     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
379     the first
380     RigidBody in each DMPC molecule \\
381     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
382     molecule \\
383     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
384     select all atoms
385     belonging to all rigid bodies within all DMPC molecules \\
386     \hline
387     \end{tabular}
388     \end{center}
389    
390     \subsection{\label{appendixSection:index}Index expressions}
391    
392     \begin{center}
393     \begin{tabular}{|lp{4in}|}
394     \hline
395     {\bf examples} & {\bf translation of examples} \\
396     \hline
397     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
398     select 20 to 30 & select all of the StuntDoubles belonging to
399     molecules which have global indices between 20 (inclusive) and 30
400     (exclusive) \\
401     \hline
402     \end{tabular}
403     \end{center}
404    
405     \subsection{\label{appendixSection:predefined}Predefined sets}
406    
407     \begin{center}
408     \begin{tabular}{|ll|}
409     \hline
410     {\bf keyword} & {\bf description} \\
411     \hline
412     all & select all StuntDoubles \\
413     none & select none of the StuntDoubles \\
414     \hline
415     \end{tabular}
416     \end{center}
417    
418     \subsection{\label{appendixSection:userdefined}User-defined expressions}
419    
420     Users can define arbitrary terms to represent groups of
421     StuntDoubles, and then use the define terms in select commands. The
422     general form for the define command is: {\bf define {\it term
423 tim 2815 expression}}. Once defined, the user can specify such terms in
424     boolean expressions
425 tim 2730
426     {\tt define SSDWATER SSD or SSD1 or SSDRF}
427    
428     {\tt select SSDWATER}
429    
430     \subsection{\label{appendixSection:comparison}Comparison expressions}
431    
432     StuntDoubles can be selected by using comparision operators on their
433     properties. The general form for the comparison command is: a
434     property name, followed by a comparision operator and then a number.
435    
436     \begin{center}
437     \begin{tabular}{|l|l|}
438     \hline
439     {\bf property} & mass, charge \\
440     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
441     ``$<=$'', ``$!=$'' \\
442     \hline
443     \end{tabular}
444     \end{center}
445    
446     For example, the phrase {\tt select mass > 16.0 and charge < -2}
447 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
448 tim 2730 charges less than -2.
449    
450     \subsection{\label{appendixSection:within}Within expressions}
451    
452     The ``within'' keyword allows the user to select all StuntDoubles
453     within the specified distance (in Angstroms) from a selection,
454     including the selected atom itself. The general form for within
455     selection is: {\tt select within(distance, expression)}
456    
457     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
458     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
459     atoms.
460    
461    
462 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
463 tim 2730
464     \subsection{\label{appendixSection:StaticProps}StaticProps}
465    
466     {\tt StaticProps} can compute properties which are averaged over
467     some or all of the configurations that are contained within a dump
468     file. The most common example of a static property that can be
469     computed is the pair distribution function between atoms of type $A$
470 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
471     also be used to compute the density distributions of other molecules
472     in a reference frame {\it fixed to the body-fixed reference frame}
473     of a selected atom or rigid body.
474 tim 2730
475     There are five seperate radial distribution functions availiable in
476     OOPSE. Since every radial distrbution function invlove the
477     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
478     -{}-sele2} must be specified to tell StaticProps which bodies to
479     include in the calculation.
480    
481     \begin{description}
482     \item[{\tt -{}-gofr}] Computes the pair distribution function,
483     \begin{equation*}
484     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
485     \sum_{j \in B} \delta(r - r_{ij}) \rangle
486     \end{equation*}
487     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
488     function. The angle is defined by the intermolecular vector
489     $\vec{r}$ and $z$-axis of DirectionalAtom A,
490     \begin{equation*}
491     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
492     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
493     \theta_{ij} - \cos \theta)\rangle
494     \end{equation*}
495     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
496     function. The angle is defined by the $z$-axes of the two
497     DirectionalAtoms A and B.
498     \begin{equation*}
499     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
500     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
501     \omega_{ij} - \cos \omega)\rangle
502     \end{equation*}
503     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
504     space $\theta, \omega$ defined by the two angles mentioned above.
505     \begin{equation*}
506     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
507     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
508     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
509     \omega)\rangle
510     \end{equation*}
511     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
512     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
513     and {\tt -{}-refsele} must be given to define A's internal
514     coordinate set as the reference frame for the calculation.
515     \end{description}
516    
517     The vectors (and angles) associated with these angular pair
518     distribution functions are most easily seen in the figure below:
519    
520     \begin{figure}
521     \centering
522 tim 2805 \includegraphics[width=3in]{definition.eps}
523 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
524     Any two directional objects (DirectionalAtoms and RigidBodies) have
525     a set of two angles ($\theta$, and $\omega$) between the z-axes of
526     their body-fixed frames.} \label{oopseFig:gofr}
527     \end{figure}
528    
529 tim 2815 Due to the fact that the selected StuntDoubles from two selections
530     may be overlapped, {\tt StaticProps} performs the calculation in
531     three stages which are illustrated in
532     Fig.~\ref{oopseFig:staticPropsProcess}.
533    
534     \begin{figure}
535     \centering
536     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
537     \caption[A representation of the three-stage correlations in
538 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
539     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
540     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
541     -{}-sele2} respectively, while $C$ is the number of stuntdobules
542     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
543     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
544     the contrary, the third stage($C$ and $C$) are completely
545     overlapping} \label{oopseFig:staticPropsProcess}
546 tim 2815 \end{figure}
547    
548 tim 2730 The options available for {\tt StaticProps} are as follows:
549     \begin{longtable}[c]{|EFG|}
550     \caption{StaticProps Command-line Options}
551     \\ \hline
552     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
553     \endhead
554     \hline
555     \endfoot
556     -h& {\tt -{}-help} & Print help and exit \\
557     -V& {\tt -{}-version} & Print version and exit \\
558 tim 2809 -i& {\tt -{}-input} & input dump file \\
559     -o& {\tt -{}-output} & output file name \\
560     -n& {\tt -{}-step} & process every n frame (default=`1') \\
561     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
562     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
563     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
564     & {\tt -{}-sele1} & select the first StuntDouble set \\
565     & {\tt -{}-sele2} & select the second StuntDouble set \\
566     & {\tt -{}-sele3} & select the third StuntDouble set \\
567     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
568     & {\tt -{}-molname} & molecule name \\
569     & {\tt -{}-begin} & begin internal index \\
570     & {\tt -{}-end} & end internal index \\
571 tim 2730 \hline
572     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
573     \hline
574     & {\tt -{}-gofr} & $g(r)$ \\
575     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
576     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
577     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
578     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
579     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
580     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
581     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
582     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
583     \end{longtable}
584    
585     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
586    
587     {\tt DynamicProps} computes time correlation functions from the
588     configurations stored in a dump file. Typical examples of time
589     correlation functions are the mean square displacement and the
590     velocity autocorrelation functions. Once again, the selection
591     syntax can be used to specify the StuntDoubles that will be used for
592     the calculation. A general time correlation function can be thought
593     of as:
594     \begin{equation}
595     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
596     \end{equation}
597     where $\vec{u}_A(t)$ is a vector property associated with an atom of
598     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
599     vector property associated with an atom of type $B$ at a different
600     time $t^{\prime}$. In most autocorrelation functions, the vector
601     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
602     $B$) are identical, and the three calculations built in to {\tt
603     DynamicProps} make these assumptions. It is possible, however, to
604     make simple modifications to the {\tt DynamicProps} code to allow
605     the use of {\it cross} time correlation functions (i.e. with
606     different vectors). The ability to use two selection scripts to
607     select different types of atoms is already present in the code.
608    
609 tim 2815 For large simulations, the trajectory files can sometimes reach
610     sizes in excess of several gigabytes. In order to effectively
611     analyze that amount of data. In order to prevent a situation where
612     the program runs out of memory due to large trajectories,
613     \texttt{dynamicProps} will estimate the size of free memory at
614     first, and determine the number of frames in each block, which
615     allows the operating system to load two blocks of data
616     simultaneously without swapping. Upon reading two blocks of the
617     trajectory, \texttt{dynamicProps} will calculate the time
618     correlation within the first block and the cross correlations
619     between the two blocks. This second block is then freed and then
620     incremented and the process repeated until the end of the
621     trajectory. Once the end is reached, the first block is freed then
622     incremented, until all frame pairs have been correlated in time.
623 tim 2816 This process is illustrated in
624     Fig.~\ref{oopseFig:dynamicPropsProcess}.
625 tim 2815
626 tim 2816 \begin{figure}
627     \centering
628     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
629     \caption[A representation of the block correlations in
630     \texttt{dynamicProps}]{This diagram illustrates block correlations
631     processing in \texttt{dynamicProps}. The shaded region represents
632     the self correlation of the block, and the open blocks are read one
633     at a time and the cross correlations between blocks are calculated.}
634     \label{oopseFig:dynamicPropsProcess}
635     \end{figure}
636    
637 tim 2730 The options available for DynamicProps are as follows:
638     \begin{longtable}[c]{|EFG|}
639     \caption{DynamicProps Command-line Options}
640     \\ \hline
641     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
642     \endhead
643     \hline
644     \endfoot
645     -h& {\tt -{}-help} & Print help and exit \\
646     -V& {\tt -{}-version} & Print version and exit \\
647 tim 2809 -i& {\tt -{}-input} & input dump file \\
648     -o& {\tt -{}-output} & output file name \\
649     & {\tt -{}-sele1} & select first StuntDouble set \\
650     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
651 tim 2730 \hline
652     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
653     \hline
654     -r& {\tt -{}-rcorr} & compute mean square displacement \\
655     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
656     -d& {\tt -{}-dcorr} & compute dipole correlation function
657     \end{longtable}
658    
659 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
660    
661     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
662    
663 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
664     which can be opened by other molecular dynamics viewers such as Jmol
665     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
666     as follows:
667 tim 2811
668    
669     \begin{longtable}[c]{|EFG|}
670     \caption{Dump2XYZ Command-line Options}
671     \\ \hline
672     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
673     \endhead
674     \hline
675     \endfoot
676     -h & {\tt -{}-help} & Print help and exit \\
677     -V & {\tt -{}-version} & Print version and exit \\
678     -i & {\tt -{}-input} & input dump file \\
679     -o & {\tt -{}-output} & output file name \\
680     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
681     -w & {\tt -{}-water} & skip the the waters (default=off) \\
682     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
683     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
684     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
685     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
686     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
687     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
688     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
689     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
690     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
691     converted. \\
692     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
693     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
694     \end{longtable}
695    
696 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
697 tim 2821
698     {\tt Hydro} can calculate resistance and diffusion tensors at the
699     center of resistance. Both tensors at the center of diffusion can
700     also be reported from the program, as well as the coordinates for
701     the beads which are used to approximate the arbitrary shapes. The
702     options available for Hydro are as follows:
703 tim 2811 \begin{longtable}[c]{|EFG|}
704     \caption{Hydrodynamics Command-line Options}
705     \\ \hline
706     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
707     \endhead
708     \hline
709     \endfoot
710     -h & {\tt -{}-help} & Print help and exit \\
711     -V & {\tt -{}-version} & Print version and exit \\
712     -i & {\tt -{}-input} & input dump file \\
713     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
714     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
715 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
716 tim 2811 \end{longtable}