ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2836
Committed: Fri Jun 9 02:12:42 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 33154 byte(s)
Log Message:
minor format change

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2688 Designing object-oriented software is hard, and designing reusable
5     object-oriented scientific software is even harder. Absence of
6     applying modern software development practices is the bottleneck of
7 tim 2812 Scientific Computing community\cite{Wilson2006}. For instance, in
8     the last 20 years , there are quite a few MD packages that were
9 tim 2688 developed to solve common MD problems and perform robust simulations
10     . However, many of the codes are legacy programs that are either
11     poorly organized or extremely complex. Usually, these packages were
12     contributed by scientists without official computer science
13     training. The development of most MD applications are lack of strong
14     coordination to enforce design and programming guidelines. Moreover,
15     most MD programs also suffer from missing design and implement
16     documents which is crucial to the maintenance and extensibility.
17 tim 2815 Along the way of studying structural and dynamic processes in
18     condensed phase systems like biological membranes and nanoparticles,
19     we developed and maintained an Object-Oriented Parallel Simulation
20     Engine ({\sc OOPSE}). This new molecular dynamics package has some
21     unique features
22     \begin{enumerate}
23     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24     atom types (transition metals, point dipoles, sticky potentials,
25     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26     degrees of freedom), as well as rigid bodies.
27     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28     Beowulf clusters to obtain very efficient parallelism.
29     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31     ensembles.
32     \item {\sc OOPSE} can carry out simulations on metallic systems using the
33     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35     \item {\sc OOPSE} can simulate systems containing the extremely efficient
36     extended-Soft Sticky Dipole (SSD/E) model for water.
37     \end{enumerate}
38 tim 2688
39 tim 2812 \section{\label{appendixSection:architecture }Architecture}
40    
41 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42     uses C++ Standard Template Library (STL) and fortran modules as the
43     foundation. As an extensive set of the STL and Fortran90 modules,
44     {\sc Base Classes} provide generic implementations of mathematical
45     objects (e.g., matrices, vectors, polynomials, random number
46     generators) and advanced data structures and algorithms(e.g., tuple,
47     bitset, generic data, string manipulation). The molecular data
48     structures for the representation of atoms, bonds, bends, torsions,
49     rigid bodies and molecules \textit{etc} are contained in the {\sc
50     Kernel} which is implemented with {\sc Base Classes} and are
51     carefully designed to provide maximum extensibility and flexibility.
52     The functionality required for applications is provide by the third
53     layer which contains Input/Output, Molecular Mechanics and Structure
54     modules. Input/Output module not only implements general methods for
55     file handling, but also defines a generic force field interface.
56     Another important component of Input/Output module is the meta-data
57     file parser, which is rewritten using ANother Tool for Language
58     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59     Mechanics module consists of energy minimization and a wide
60     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61     The structure module contains a flexible and powerful selection
62     library which syntax is elaborated in
63     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64     program of the package, \texttt{oopse} and it corresponding parallel
65     version \texttt{oopse\_MPI}, as well as other useful utilities, such
66     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67     \texttt{DynamicProps} (see
68     Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69     \texttt{Dump2XYZ} (see
70     Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71     (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72     \textit{etc}.
73    
74 tim 2812 \begin{figure}
75     \centering
76 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
77 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78     of {\sc OOPSE}} \label{appendixFig:architecture}
79 tim 2812 \end{figure}
80    
81 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
82    
83 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
84     in software design. Although originated as an architectural concept
85 tim 2807 for buildings and towns by Christopher Alexander
86     \cite{Alexander1987}, software patterns first became popular with
87     the wide acceptance of the book, Design Patterns: Elements of
88     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89     the experience, knowledge and insights of developers who have
90     successfully used these patterns in their own work. Patterns are
91     reusable. They provide a ready-made solution that can be adapted to
92     different problems as necessary. Pattern are expressive. they
93     provide a common vocabulary of solutions that can express large
94     solutions succinctly.
95 tim 2685
96 tim 2688 Patterns are usually described using a format that includes the
97     following information:
98     \begin{enumerate}
99     \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100     discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101     in the literature. In this case it is common practice to document these nicknames or synonyms under
102     the heading of \emph{Aliases} or \emph{Also Known As}.
103     \item The \emph{motivation} or \emph{context} that this pattern applies
104     to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105     \item The \emph{solution} to the problem that the pattern
106     addresses. It describes how to construct the necessary work products. The description may include
107     pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108     collaborations, to show how the problem is solved.
109     \item The \emph{consequences} of using the given solution to solve a
110     problem, both positive and negative.
111     \end{enumerate}
112 tim 2685
113 tim 2688 As one of the latest advanced techniques emerged from
114     object-oriented community, design patterns were applied in some of
115 tim 2815 the modern scientific software applications, such as JMol, {\sc
116     OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117     The following sections enumerates some of the patterns used in {\sc
118     OOPSE}.
119 tim 2685
120 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
121 tim 2836
122 tim 2821 The Singleton pattern not only provides a mechanism to restrict
123     instantiation of a class to one object, but also provides a global
124     point of access to the object. Currently implemented as a global
125     variable, the logging utility which reports error and warning
126     messages to the console in {\sc OOPSE} is a good candidate for
127     applying the Singleton pattern to avoid the global namespace
128     pollution.Although the singleton pattern can be implemented in
129     various ways to account for different aspects of the software
130     designs, such as lifespan control \textit{etc}, we only use the
131 tim 2836 static data approach in {\sc OOPSE}. IntegratorFactory class is
132     declared as
133    
134 tim 2835 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135 tim 2693
136 tim 2825 class IntegratorFactory {
137 tim 2832 public:
138     static IntegratorFactory*
139     getInstance();
140     protected:
141     IntegratorFactory();
142     private:
143     static IntegratorFactory* instance_;
144 tim 2825 };
145    
146 tim 2821 \end{lstlisting}
147 tim 2836
148 tim 2821 The corresponding implementation is
149 tim 2836
150 tim 2835 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151 tim 2821
152     IntegratorFactory::instance_ = NULL;
153    
154     IntegratorFactory* getInstance() {
155     if (instance_ == NULL){
156     instance_ = new IntegratorFactory;
157     }
158     return instance_;
159     }
160 tim 2825
161 tim 2821 \end{lstlisting}
162    
163 tim 2836 Since constructor is declared as protected, a client can not
164     instantiate IntegratorFactory directly. Moreover, since the member
165     function getInstance serves as the only entry of access to
166     IntegratorFactory, this approach fulfills the basic requirement, a
167     single instance. Another consequence of this approach is the
168     automatic destruction since static data are destroyed upon program
169     termination.
170    
171 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
172 tim 2685
173 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
174     with the problem of creating objects without specifying the exact
175     class of object that will be created. Factory Method is typically
176     implemented by delegating the creation operation to the subclasses.
177 tim 2836 Parameterized Factory pattern where factory method (
178     createIntegrator member function) creates products based on the
179     identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180     the identifier has been already registered, the factory method will
181     invoke the corresponding creator (see List.~\ref{integratorCreator})
182     which utilizes the modern C++ template technique to avoid excess
183     subclassing.
184 tim 2822
185 tim 2836 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186    
187 tim 2825 class IntegratorFactory {
188 tim 2832 public:
189     typedef std::map<string, IntegratorCreator*> CreatorMapType;
190 tim 2821
191 tim 2832 bool registerIntegrator(IntegratorCreator* creator) {
192     return creatorMap_.insert(creator->getIdent(), creator).second;
193     }
194 tim 2821
195 tim 2832 Integrator* createIntegrator(const string& id, SimInfo* info) {
196     Integrator* result = NULL;
197     CreatorMapType::iterator i = creatorMap_.find(id);
198     if (i != creatorMap_.end()) {
199     result = (i->second)->create(info);
200 tim 2831 }
201 tim 2832 return result;
202     }
203 tim 2825
204 tim 2832 private:
205     CreatorMapType creatorMap_;
206 tim 2825 };
207 tim 2821 \end{lstlisting}
208 tim 2836
209 tim 2835 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210 tim 2821
211 tim 2825 class IntegratorCreator {
212 tim 2832 public:
213 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
214 tim 2822
215 tim 2823 const string& getIdent() const { return ident_; }
216 tim 2821
217     virtual Integrator* create(SimInfo* info) const = 0;
218    
219 tim 2832 private:
220 tim 2823 string ident_;
221 tim 2825 };
222 tim 2821
223 tim 2833 template<class ConcreteIntegrator>
224     class IntegratorBuilder : public IntegratorCreator {
225 tim 2832 public:
226     IntegratorBuilder(const string& ident)
227 tim 2833 : IntegratorCreator(ident) {}
228 tim 2832 virtual Integrator* create(SimInfo* info) const {
229     return new ConcreteIntegrator(info);
230     }
231 tim 2825 };
232 tim 2821 \end{lstlisting}
233    
234 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
235 tim 2821
236 tim 2836 The visitor pattern is designed to decouple the data structure and
237     algorithms used upon them by collecting related operation from
238     element classes into other visitor classes, which is equivalent to
239     adding virtual functions into a set of classes without modifying
240     their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241     structure of Visitor pattern which is used extensively in {\tt
242     Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243     distinct operations are performed on different StuntDoubles (See the
244     class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245     in List.~\ref{appendixScheme:element}). Since the hierarchies
246     remains stable, it is easy to define a visit operation (see
247     List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248     Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249     manages a priority visitor list and handles the execution of every
250     visitor in the priority list on different StuntDoubles.
251 tim 2685
252 tim 2824 \begin{figure}
253     \centering
254 tim 2826 \includegraphics[width=\linewidth]{visitor.eps}
255 tim 2835 \caption[The UML class diagram of Visitor patten] {The UML class
256     diagram of Visitor patten.} \label{appendixFig:visitorUML}
257 tim 2824 \end{figure}
258    
259 tim 2836 %\begin{figure}
260     %\centering
261     %\includegraphics[width=\linewidth]{hierarchy.eps}
262     %\caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263     %the class hierarchy.
264     %\begin{itemize}
265     %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
266     %integrators and minimizers.
267     %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
268     %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
269     %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
270     %DirectionalAtom}s which behaves as a single unit.
271     %\end{itemize}
272     %} \label{oopseFig:hierarchy}
273     %\end{figure}
274    
275     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
276    
277     class StuntDouble { public:
278     virtual void accept(BaseVisitor* v) = 0;
279     };
280    
281     class Atom: public StuntDouble { public:
282     virtual void accept{BaseVisitor* v*} {
283     v->visit(this);
284     }
285     };
286    
287     class DirectionalAtom: public Atom { public:
288     virtual void accept{BaseVisitor* v*} {
289     v->visit(this);
290     }
291     };
292    
293     class RigidBody: public StuntDouble { public:
294     virtual void accept{BaseVisitor* v*} {
295     v->visit(this);
296     }
297     };
298    
299     \end{lstlisting}
300    
301 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
302 tim 2825
303     class BaseVisitor{
304 tim 2832 public:
305     virtual void visit(Atom* atom);
306     virtual void visit(DirectionalAtom* datom);
307     virtual void visit(RigidBody* rb);
308 tim 2825 };
309    
310 tim 2835 class BaseAtomVisitor:public BaseVisitor{ public:
311     virtual void visit(Atom* atom);
312     virtual void visit(DirectionalAtom* datom);
313     virtual void visit(RigidBody* rb);
314     };
315    
316 tim 2836 class SSDAtomVisitor:public BaseAtomVisitor{ public:
317     virtual void visit(Atom* atom);
318     virtual void visit(DirectionalAtom* datom);
319     virtual void visit(RigidBody* rb);
320     };
321 tim 2824
322 tim 2836 class CompositeVisitor: public BaseVisitor {
323 tim 2832 public:
324 tim 2821
325 tim 2836 typedef list<pair<BaseVisitor*, int> > VistorListType;
326     typedef VistorListType::iterator VisitorListIterator;
327     virtual void visit(Atom* atom) {
328     VisitorListIterator i;
329     BaseVisitor* curVisitor;
330     for(i = visitorList.begin();i != visitorList.end();++i) {
331     atom->accept(*i);
332     }
333 tim 2832 }
334 tim 2821
335 tim 2836 virtual void visit(DirectionalAtom* datom) {
336     VisitorListIterator i;
337     BaseVisitor* curVisitor;
338     for(i = visitorList.begin();i != visitorList.end();++i) {
339     atom->accept(*i);
340     }
341 tim 2832 }
342 tim 2821
343 tim 2836 virtual void visit(RigidBody* rb) {
344     VisitorListIterator i;
345     std::vector<Atom*> myAtoms;
346     std::vector<Atom*>::iterator ai;
347     myAtoms = rb->getAtoms();
348     for(i = visitorList.begin();i != visitorList.end();++i) {{
349     rb->accept(*i);
350     for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
351     (*ai)->accept(*i);
352     }
353 tim 2832 }
354 tim 2836
355     void addVisitor(BaseVisitor* v, int priority);
356    
357     protected:
358     VistorListType visitorList;
359 tim 2825 };
360    
361 tim 2821 \end{lstlisting}
362 tim 2829
363 tim 2730 \section{\label{appendixSection:concepts}Concepts}
364 tim 2685
365 tim 2829 OOPSE manipulates both traditional atoms as well as some objects
366     that {\it behave like atoms}. These objects can be rigid
367     collections of atoms or atoms which have orientational degrees of
368 tim 2836 freedom. A diagram of the class hierarchy is illustrated in
369     Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
370 tim 2829 DirectionalAtom in {\sc OOPSE} have their own names which are
371     specified in the {\tt .md} file. In contrast, RigidBodies are
372     denoted by their membership and index inside a particular molecule:
373     [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
374     on the specifics of the simulation). The names of rigid bodies are
375     generated automatically. For example, the name of the first rigid
376     body in a DMPC molecule is DMPC\_RB\_0.
377 tim 2688
378 tim 2730 \section{\label{appendixSection:syntax}Syntax of the Select Command}
379    
380     The most general form of the select command is: {\tt select {\it
381 tim 2815 expression}}. This expression represents an arbitrary set of
382     StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
383     composed of either name expressions, index expressions, predefined
384     sets, user-defined expressions, comparison operators, within
385     expressions, or logical combinations of the above expression types.
386     Expressions can be combined using parentheses and the Boolean
387     operators.
388 tim 2730
389     \subsection{\label{appendixSection:logical}Logical expressions}
390    
391     The logical operators allow complex queries to be constructed out of
392     simpler ones using the standard boolean connectives {\bf and}, {\bf
393     or}, {\bf not}. Parentheses can be used to alter the precedence of
394     the operators.
395    
396     \begin{center}
397     \begin{tabular}{|ll|}
398     \hline
399     {\bf logical operator} & {\bf equivalent operator} \\
400     \hline
401     and & ``\&'', ``\&\&'' \\
402     or & ``$|$'', ``$||$'', ``,'' \\
403     not & ``!'' \\
404     \hline
405     \end{tabular}
406     \end{center}
407    
408     \subsection{\label{appendixSection:name}Name expressions}
409    
410     \begin{center}
411 tim 2805 \begin{tabular}{|llp{2in}|}
412 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
413     of
414     examples} \\
415     \hline expression without ``.'' & select DMPC & select all
416     StuntDoubles
417     belonging to all DMPC molecules \\
418     & select C* & select all atoms which have atom types beginning with C
419     \\
420     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
421     only select the rigid bodies, and not the atoms belonging to them). \\
422     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
423     O\_TIP3P
424     atoms belonging to TIP3P molecules \\
425     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
426     the first
427     RigidBody in each DMPC molecule \\
428     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
429     molecule \\
430     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
431     select all atoms
432     belonging to all rigid bodies within all DMPC molecules \\
433     \hline
434     \end{tabular}
435     \end{center}
436    
437     \subsection{\label{appendixSection:index}Index expressions}
438    
439     \begin{center}
440     \begin{tabular}{|lp{4in}|}
441     \hline
442     {\bf examples} & {\bf translation of examples} \\
443     \hline
444     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
445     select 20 to 30 & select all of the StuntDoubles belonging to
446     molecules which have global indices between 20 (inclusive) and 30
447     (exclusive) \\
448     \hline
449     \end{tabular}
450     \end{center}
451    
452     \subsection{\label{appendixSection:predefined}Predefined sets}
453    
454     \begin{center}
455     \begin{tabular}{|ll|}
456     \hline
457     {\bf keyword} & {\bf description} \\
458     \hline
459     all & select all StuntDoubles \\
460     none & select none of the StuntDoubles \\
461     \hline
462     \end{tabular}
463     \end{center}
464    
465     \subsection{\label{appendixSection:userdefined}User-defined expressions}
466    
467     Users can define arbitrary terms to represent groups of
468     StuntDoubles, and then use the define terms in select commands. The
469     general form for the define command is: {\bf define {\it term
470 tim 2815 expression}}. Once defined, the user can specify such terms in
471     boolean expressions
472 tim 2730
473     {\tt define SSDWATER SSD or SSD1 or SSDRF}
474    
475     {\tt select SSDWATER}
476    
477     \subsection{\label{appendixSection:comparison}Comparison expressions}
478    
479     StuntDoubles can be selected by using comparision operators on their
480     properties. The general form for the comparison command is: a
481     property name, followed by a comparision operator and then a number.
482    
483     \begin{center}
484     \begin{tabular}{|l|l|}
485     \hline
486     {\bf property} & mass, charge \\
487     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
488     ``$<=$'', ``$!=$'' \\
489     \hline
490     \end{tabular}
491     \end{center}
492    
493     For example, the phrase {\tt select mass > 16.0 and charge < -2}
494 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
495 tim 2730 charges less than -2.
496    
497     \subsection{\label{appendixSection:within}Within expressions}
498    
499     The ``within'' keyword allows the user to select all StuntDoubles
500     within the specified distance (in Angstroms) from a selection,
501     including the selected atom itself. The general form for within
502     selection is: {\tt select within(distance, expression)}
503    
504     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
505     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
506     atoms.
507    
508    
509 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
510 tim 2730
511     \subsection{\label{appendixSection:StaticProps}StaticProps}
512    
513     {\tt StaticProps} can compute properties which are averaged over
514     some or all of the configurations that are contained within a dump
515     file. The most common example of a static property that can be
516     computed is the pair distribution function between atoms of type $A$
517 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
518     also be used to compute the density distributions of other molecules
519     in a reference frame {\it fixed to the body-fixed reference frame}
520     of a selected atom or rigid body.
521 tim 2730
522     There are five seperate radial distribution functions availiable in
523     OOPSE. Since every radial distrbution function invlove the
524     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
525     -{}-sele2} must be specified to tell StaticProps which bodies to
526     include in the calculation.
527    
528     \begin{description}
529     \item[{\tt -{}-gofr}] Computes the pair distribution function,
530     \begin{equation*}
531     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
532     \sum_{j \in B} \delta(r - r_{ij}) \rangle
533     \end{equation*}
534     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
535     function. The angle is defined by the intermolecular vector
536     $\vec{r}$ and $z$-axis of DirectionalAtom A,
537     \begin{equation*}
538     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
539     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
540     \theta_{ij} - \cos \theta)\rangle
541     \end{equation*}
542     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
543     function. The angle is defined by the $z$-axes of the two
544     DirectionalAtoms A and B.
545     \begin{equation*}
546     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
547     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
548     \omega_{ij} - \cos \omega)\rangle
549     \end{equation*}
550     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
551     space $\theta, \omega$ defined by the two angles mentioned above.
552     \begin{equation*}
553     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
554     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
555     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
556     \omega)\rangle
557     \end{equation*}
558     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
559     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
560     and {\tt -{}-refsele} must be given to define A's internal
561     coordinate set as the reference frame for the calculation.
562     \end{description}
563    
564     The vectors (and angles) associated with these angular pair
565     distribution functions are most easily seen in the figure below:
566    
567     \begin{figure}
568     \centering
569 tim 2805 \includegraphics[width=3in]{definition.eps}
570 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
571     Any two directional objects (DirectionalAtoms and RigidBodies) have
572     a set of two angles ($\theta$, and $\omega$) between the z-axes of
573     their body-fixed frames.} \label{oopseFig:gofr}
574     \end{figure}
575    
576 tim 2815 Due to the fact that the selected StuntDoubles from two selections
577     may be overlapped, {\tt StaticProps} performs the calculation in
578     three stages which are illustrated in
579     Fig.~\ref{oopseFig:staticPropsProcess}.
580    
581     \begin{figure}
582     \centering
583     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
584     \caption[A representation of the three-stage correlations in
585 tim 2816 \texttt{StaticProps}]{This diagram illustrates three-stage
586     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
587     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
588     -{}-sele2} respectively, while $C$ is the number of stuntdobules
589     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
590     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
591     the contrary, the third stage($C$ and $C$) are completely
592     overlapping} \label{oopseFig:staticPropsProcess}
593 tim 2815 \end{figure}
594    
595 tim 2730 The options available for {\tt StaticProps} are as follows:
596     \begin{longtable}[c]{|EFG|}
597     \caption{StaticProps Command-line Options}
598     \\ \hline
599     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
600     \endhead
601     \hline
602     \endfoot
603     -h& {\tt -{}-help} & Print help and exit \\
604     -V& {\tt -{}-version} & Print version and exit \\
605 tim 2809 -i& {\tt -{}-input} & input dump file \\
606     -o& {\tt -{}-output} & output file name \\
607     -n& {\tt -{}-step} & process every n frame (default=`1') \\
608     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
609     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
610     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
611     & {\tt -{}-sele1} & select the first StuntDouble set \\
612     & {\tt -{}-sele2} & select the second StuntDouble set \\
613     & {\tt -{}-sele3} & select the third StuntDouble set \\
614     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
615     & {\tt -{}-molname} & molecule name \\
616     & {\tt -{}-begin} & begin internal index \\
617     & {\tt -{}-end} & end internal index \\
618 tim 2730 \hline
619     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
620     \hline
621     & {\tt -{}-gofr} & $g(r)$ \\
622     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
623     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
624     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
625     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
626     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
627     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
628     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
629     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
630     \end{longtable}
631    
632     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
633    
634     {\tt DynamicProps} computes time correlation functions from the
635     configurations stored in a dump file. Typical examples of time
636     correlation functions are the mean square displacement and the
637     velocity autocorrelation functions. Once again, the selection
638     syntax can be used to specify the StuntDoubles that will be used for
639     the calculation. A general time correlation function can be thought
640     of as:
641     \begin{equation}
642     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
643     \end{equation}
644     where $\vec{u}_A(t)$ is a vector property associated with an atom of
645     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
646     vector property associated with an atom of type $B$ at a different
647     time $t^{\prime}$. In most autocorrelation functions, the vector
648     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
649     $B$) are identical, and the three calculations built in to {\tt
650     DynamicProps} make these assumptions. It is possible, however, to
651     make simple modifications to the {\tt DynamicProps} code to allow
652     the use of {\it cross} time correlation functions (i.e. with
653     different vectors). The ability to use two selection scripts to
654     select different types of atoms is already present in the code.
655    
656 tim 2815 For large simulations, the trajectory files can sometimes reach
657     sizes in excess of several gigabytes. In order to effectively
658     analyze that amount of data. In order to prevent a situation where
659     the program runs out of memory due to large trajectories,
660     \texttt{dynamicProps} will estimate the size of free memory at
661     first, and determine the number of frames in each block, which
662     allows the operating system to load two blocks of data
663     simultaneously without swapping. Upon reading two blocks of the
664     trajectory, \texttt{dynamicProps} will calculate the time
665     correlation within the first block and the cross correlations
666     between the two blocks. This second block is then freed and then
667     incremented and the process repeated until the end of the
668     trajectory. Once the end is reached, the first block is freed then
669     incremented, until all frame pairs have been correlated in time.
670 tim 2816 This process is illustrated in
671     Fig.~\ref{oopseFig:dynamicPropsProcess}.
672 tim 2815
673 tim 2816 \begin{figure}
674     \centering
675     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
676     \caption[A representation of the block correlations in
677     \texttt{dynamicProps}]{This diagram illustrates block correlations
678     processing in \texttt{dynamicProps}. The shaded region represents
679     the self correlation of the block, and the open blocks are read one
680     at a time and the cross correlations between blocks are calculated.}
681     \label{oopseFig:dynamicPropsProcess}
682     \end{figure}
683    
684 tim 2730 The options available for DynamicProps are as follows:
685     \begin{longtable}[c]{|EFG|}
686     \caption{DynamicProps Command-line Options}
687     \\ \hline
688     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
689     \endhead
690     \hline
691     \endfoot
692     -h& {\tt -{}-help} & Print help and exit \\
693     -V& {\tt -{}-version} & Print version and exit \\
694 tim 2809 -i& {\tt -{}-input} & input dump file \\
695     -o& {\tt -{}-output} & output file name \\
696     & {\tt -{}-sele1} & select first StuntDouble set \\
697     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
698 tim 2730 \hline
699     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
700     \hline
701     -r& {\tt -{}-rcorr} & compute mean square displacement \\
702     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
703     -d& {\tt -{}-dcorr} & compute dipole correlation function
704     \end{longtable}
705    
706 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
707    
708     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
709    
710 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
711     which can be opened by other molecular dynamics viewers such as Jmol
712     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
713     as follows:
714 tim 2811
715    
716     \begin{longtable}[c]{|EFG|}
717     \caption{Dump2XYZ Command-line Options}
718     \\ \hline
719     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
720     \endhead
721     \hline
722     \endfoot
723     -h & {\tt -{}-help} & Print help and exit \\
724     -V & {\tt -{}-version} & Print version and exit \\
725     -i & {\tt -{}-input} & input dump file \\
726     -o & {\tt -{}-output} & output file name \\
727     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
728     -w & {\tt -{}-water} & skip the the waters (default=off) \\
729     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
730     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
731     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
732     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
733     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
734     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
735     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
736     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
737     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
738     converted. \\
739     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
740     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
741     \end{longtable}
742    
743 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
744 tim 2821
745     {\tt Hydro} can calculate resistance and diffusion tensors at the
746     center of resistance. Both tensors at the center of diffusion can
747     also be reported from the program, as well as the coordinates for
748     the beads which are used to approximate the arbitrary shapes. The
749     options available for Hydro are as follows:
750 tim 2811 \begin{longtable}[c]{|EFG|}
751     \caption{Hydrodynamics Command-line Options}
752     \\ \hline
753     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
754     \endhead
755     \hline
756     \endfoot
757     -h & {\tt -{}-help} & Print help and exit \\
758     -V & {\tt -{}-version} & Print version and exit \\
759     -i & {\tt -{}-input} & input dump file \\
760     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
761     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
762 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
763 tim 2811 \end{longtable}