ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2842
Committed: Fri Jun 9 04:07:13 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31841 byte(s)
Log Message:
more reference fixes

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2840 Absence of applying modern software development practices is the
5     bottleneck of Scientific Computing community\cite{Wilson2006}. In
6 tim 2841 the last 20 years , there are quite a few MD
7     packages\cite{Brooks1983, Vincent1995, Kale1999} that were developed
8     to solve common MD problems and perform robust simulations .
9     Unfortunately, most of them are commercial programs that are either
10     poorly written or extremely complicate. Consequently, it prevents
11     the researchers to reuse or extend those packages to do cutting-edge
12     research effectively. Along the way of studying structural and
13     dynamic processes in condensed phase systems like biological
14     membranes and nanoparticles, we developed an open source
15     Object-Oriented Parallel Simulation Engine ({\sc OOPSE}). This new
16     molecular dynamics package has some unique features
17 tim 2815 \begin{enumerate}
18     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
19     atom types (transition metals, point dipoles, sticky potentials,
20     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
21     degrees of freedom), as well as rigid bodies.
22     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
23     Beowulf clusters to obtain very efficient parallelism.
24     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
25     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
26     ensembles.
27     \item {\sc OOPSE} can carry out simulations on metallic systems using the
28     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
29     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
30     \item {\sc OOPSE} can simulate systems containing the extremely efficient
31     extended-Soft Sticky Dipole (SSD/E) model for water.
32     \end{enumerate}
33 tim 2688
34 tim 2812 \section{\label{appendixSection:architecture }Architecture}
35    
36 tim 2815 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
37     uses C++ Standard Template Library (STL) and fortran modules as the
38     foundation. As an extensive set of the STL and Fortran90 modules,
39     {\sc Base Classes} provide generic implementations of mathematical
40     objects (e.g., matrices, vectors, polynomials, random number
41     generators) and advanced data structures and algorithms(e.g., tuple,
42     bitset, generic data, string manipulation). The molecular data
43     structures for the representation of atoms, bonds, bends, torsions,
44     rigid bodies and molecules \textit{etc} are contained in the {\sc
45     Kernel} which is implemented with {\sc Base Classes} and are
46     carefully designed to provide maximum extensibility and flexibility.
47     The functionality required for applications is provide by the third
48     layer which contains Input/Output, Molecular Mechanics and Structure
49     modules. Input/Output module not only implements general methods for
50     file handling, but also defines a generic force field interface.
51     Another important component of Input/Output module is the meta-data
52     file parser, which is rewritten using ANother Tool for Language
53     Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
54     Mechanics module consists of energy minimization and a wide
55     varieties of integration methods(see Chap.~\ref{chapt:methodology}).
56     The structure module contains a flexible and powerful selection
57     library which syntax is elaborated in
58     Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
59     program of the package, \texttt{oopse} and it corresponding parallel
60     version \texttt{oopse\_MPI}, as well as other useful utilities, such
61     as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
62 tim 2840 \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
63     \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
64     \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
65 tim 2815 \textit{etc}.
66    
67 tim 2812 \begin{figure}
68     \centering
69 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
70 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
71     of {\sc OOPSE}} \label{appendixFig:architecture}
72 tim 2812 \end{figure}
73    
74 tim 2685 \section{\label{appendixSection:desginPattern}Design Pattern}
75    
76 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
77     in software design. Although originated as an architectural concept
78 tim 2807 for buildings and towns by Christopher Alexander
79     \cite{Alexander1987}, software patterns first became popular with
80     the wide acceptance of the book, Design Patterns: Elements of
81     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
82     the experience, knowledge and insights of developers who have
83     successfully used these patterns in their own work. Patterns are
84     reusable. They provide a ready-made solution that can be adapted to
85     different problems as necessary. Pattern are expressive. they
86     provide a common vocabulary of solutions that can express large
87 tim 2842 solutions succinctly. As one of the latest advanced techniques
88     emerged from object-oriented community, design patterns were applied
89     in some of the modern scientific software applications, such as
90     JMol, {\sc OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2004}
91 tim 2839 \textit{etc}. The following sections enumerates some of the patterns
92     used in {\sc OOPSE}.
93 tim 2685
94 tim 2693 \subsection{\label{appendixSection:singleton}Singleton}
95 tim 2836
96 tim 2821 The Singleton pattern not only provides a mechanism to restrict
97     instantiation of a class to one object, but also provides a global
98     point of access to the object. Currently implemented as a global
99     variable, the logging utility which reports error and warning
100     messages to the console in {\sc OOPSE} is a good candidate for
101     applying the Singleton pattern to avoid the global namespace
102 tim 2842 pollution. Although the singleton pattern can be implemented in
103 tim 2821 various ways to account for different aspects of the software
104     designs, such as lifespan control \textit{etc}, we only use the
105 tim 2842 static data approach in {\sc OOPSE}. The declaration and
106     implementation of IntegratorFactory class are given by declared in
107     List.~\ref{appendixScheme:singletonDeclaration} and
108     List.~\ref{appendixScheme:singletonImplementation} respectively.
109     Since constructor is declared as protected, a client can not
110     instantiate IntegratorFactory directly. Moreover, since the member
111     function getInstance serves as the only entry of access to
112     IntegratorFactory, this approach fulfills the basic requirement, a
113     single instance. Another consequence of this approach is the
114     automatic destruction since static data are destroyed upon program
115     termination.
116 tim 2835 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
117 tim 2693
118 tim 2825 class IntegratorFactory {
119 tim 2832 public:
120     static IntegratorFactory*
121     getInstance();
122     protected:
123     IntegratorFactory();
124     private:
125     static IntegratorFactory* instance_;
126 tim 2825 };
127    
128 tim 2821 \end{lstlisting}
129 tim 2836
130 tim 2835 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
131 tim 2821
132     IntegratorFactory::instance_ = NULL;
133    
134     IntegratorFactory* getInstance() {
135     if (instance_ == NULL){
136     instance_ = new IntegratorFactory;
137     }
138     return instance_;
139     }
140 tim 2825
141 tim 2821 \end{lstlisting}
142    
143 tim 2836
144 tim 2688 \subsection{\label{appendixSection:factoryMethod}Factory Method}
145 tim 2685
146 tim 2821 Categoried as a creational pattern, the Factory Method pattern deals
147     with the problem of creating objects without specifying the exact
148     class of object that will be created. Factory Method is typically
149     implemented by delegating the creation operation to the subclasses.
150 tim 2836 Parameterized Factory pattern where factory method (
151     createIntegrator member function) creates products based on the
152     identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
153     the identifier has been already registered, the factory method will
154 tim 2842 invoke the corresponding creator (see
155     List.~\ref{appendixScheme:integratorCreator}) which utilizes the
156     modern C++ template technique to avoid excess subclassing.
157 tim 2822
158 tim 2836 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
159    
160 tim 2825 class IntegratorFactory {
161 tim 2832 public:
162     typedef std::map<string, IntegratorCreator*> CreatorMapType;
163 tim 2821
164 tim 2832 bool registerIntegrator(IntegratorCreator* creator) {
165     return creatorMap_.insert(creator->getIdent(), creator).second;
166     }
167 tim 2821
168 tim 2832 Integrator* createIntegrator(const string& id, SimInfo* info) {
169     Integrator* result = NULL;
170     CreatorMapType::iterator i = creatorMap_.find(id);
171     if (i != creatorMap_.end()) {
172     result = (i->second)->create(info);
173 tim 2831 }
174 tim 2832 return result;
175     }
176 tim 2825
177 tim 2832 private:
178     CreatorMapType creatorMap_;
179 tim 2825 };
180 tim 2821 \end{lstlisting}
181 tim 2836
182 tim 2835 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
183 tim 2821
184 tim 2825 class IntegratorCreator {
185 tim 2832 public:
186 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
187 tim 2822
188 tim 2823 const string& getIdent() const { return ident_; }
189 tim 2821
190     virtual Integrator* create(SimInfo* info) const = 0;
191    
192 tim 2832 private:
193 tim 2823 string ident_;
194 tim 2825 };
195 tim 2821
196 tim 2833 template<class ConcreteIntegrator>
197     class IntegratorBuilder : public IntegratorCreator {
198 tim 2832 public:
199     IntegratorBuilder(const string& ident)
200 tim 2833 : IntegratorCreator(ident) {}
201 tim 2832 virtual Integrator* create(SimInfo* info) const {
202     return new ConcreteIntegrator(info);
203     }
204 tim 2825 };
205 tim 2821 \end{lstlisting}
206    
207 tim 2688 \subsection{\label{appendixSection:visitorPattern}Visitor}
208 tim 2821
209 tim 2836 The visitor pattern is designed to decouple the data structure and
210     algorithms used upon them by collecting related operation from
211     element classes into other visitor classes, which is equivalent to
212     adding virtual functions into a set of classes without modifying
213     their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
214     structure of Visitor pattern which is used extensively in {\tt
215     Dump2XYZ}. In order to convert an OOPSE dump file, a series of
216     distinct operations are performed on different StuntDoubles (See the
217     class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
218     in List.~\ref{appendixScheme:element}). Since the hierarchies
219     remains stable, it is easy to define a visit operation (see
220     List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
221     Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
222     manages a priority visitor list and handles the execution of every
223     visitor in the priority list on different StuntDoubles.
224 tim 2685
225 tim 2824 \begin{figure}
226     \centering
227 tim 2826 \includegraphics[width=\linewidth]{visitor.eps}
228 tim 2835 \caption[The UML class diagram of Visitor patten] {The UML class
229     diagram of Visitor patten.} \label{appendixFig:visitorUML}
230 tim 2824 \end{figure}
231    
232 tim 2838 \begin{figure}
233     \centering
234     \includegraphics[width=\linewidth]{hierarchy.eps}
235     \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
236     the class hierarchy. } \label{oopseFig:hierarchy}
237     \end{figure}
238 tim 2836
239     \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
240    
241     class StuntDouble { public:
242     virtual void accept(BaseVisitor* v) = 0;
243     };
244    
245     class Atom: public StuntDouble { public:
246     virtual void accept{BaseVisitor* v*} {
247     v->visit(this);
248     }
249     };
250    
251     class DirectionalAtom: public Atom { public:
252     virtual void accept{BaseVisitor* v*} {
253     v->visit(this);
254     }
255     };
256    
257     class RigidBody: public StuntDouble { public:
258     virtual void accept{BaseVisitor* v*} {
259     v->visit(this);
260     }
261     };
262    
263     \end{lstlisting}
264    
265 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
266 tim 2825
267     class BaseVisitor{
268 tim 2832 public:
269     virtual void visit(Atom* atom);
270     virtual void visit(DirectionalAtom* datom);
271     virtual void visit(RigidBody* rb);
272 tim 2825 };
273    
274 tim 2835 class BaseAtomVisitor:public BaseVisitor{ public:
275     virtual void visit(Atom* atom);
276     virtual void visit(DirectionalAtom* datom);
277     virtual void visit(RigidBody* rb);
278     };
279    
280 tim 2836 class SSDAtomVisitor:public BaseAtomVisitor{ public:
281     virtual void visit(Atom* atom);
282     virtual void visit(DirectionalAtom* datom);
283     virtual void visit(RigidBody* rb);
284     };
285 tim 2824
286 tim 2836 class CompositeVisitor: public BaseVisitor {
287 tim 2832 public:
288 tim 2821
289 tim 2836 typedef list<pair<BaseVisitor*, int> > VistorListType;
290     typedef VistorListType::iterator VisitorListIterator;
291     virtual void visit(Atom* atom) {
292     VisitorListIterator i;
293     BaseVisitor* curVisitor;
294     for(i = visitorList.begin();i != visitorList.end();++i) {
295     atom->accept(*i);
296     }
297 tim 2832 }
298 tim 2821
299 tim 2836 virtual void visit(DirectionalAtom* datom) {
300     VisitorListIterator i;
301     BaseVisitor* curVisitor;
302     for(i = visitorList.begin();i != visitorList.end();++i) {
303     atom->accept(*i);
304     }
305 tim 2832 }
306 tim 2821
307 tim 2836 virtual void visit(RigidBody* rb) {
308     VisitorListIterator i;
309     std::vector<Atom*> myAtoms;
310     std::vector<Atom*>::iterator ai;
311     myAtoms = rb->getAtoms();
312     for(i = visitorList.begin();i != visitorList.end();++i) {{
313     rb->accept(*i);
314     for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
315     (*ai)->accept(*i);
316     }
317 tim 2832 }
318 tim 2836
319     void addVisitor(BaseVisitor* v, int priority);
320    
321     protected:
322     VistorListType visitorList;
323 tim 2825 };
324    
325 tim 2821 \end{lstlisting}
326 tim 2829
327 tim 2730 \section{\label{appendixSection:concepts}Concepts}
328 tim 2685
329 tim 2829 OOPSE manipulates both traditional atoms as well as some objects
330     that {\it behave like atoms}. These objects can be rigid
331     collections of atoms or atoms which have orientational degrees of
332 tim 2836 freedom. A diagram of the class hierarchy is illustrated in
333     Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
334 tim 2829 DirectionalAtom in {\sc OOPSE} have their own names which are
335     specified in the {\tt .md} file. In contrast, RigidBodies are
336     denoted by their membership and index inside a particular molecule:
337     [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
338     on the specifics of the simulation). The names of rigid bodies are
339     generated automatically. For example, the name of the first rigid
340     body in a DMPC molecule is DMPC\_RB\_0.
341 tim 2838 \begin{itemize}
342     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
343     integrators and minimizers.
344     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
345     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
346     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
347     DirectionalAtom}s which behaves as a single unit.
348     \end{itemize}
349 tim 2688
350 tim 2730 \section{\label{appendixSection:syntax}Syntax of the Select Command}
351    
352 tim 2837 {\sc OOPSE} provides a powerful selection utility to select
353     StuntDoubles. The most general form of the select command is:
354 tim 2730
355 tim 2837 {\tt select {\it expression}}.
356    
357     This expression represents an arbitrary set of StuntDoubles (Atoms
358     or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
359     name expressions, index expressions, predefined sets, user-defined
360     expressions, comparison operators, within expressions, or logical
361     combinations of the above expression types. Expressions can be
362     combined using parentheses and the Boolean operators.
363    
364 tim 2730 \subsection{\label{appendixSection:logical}Logical expressions}
365    
366     The logical operators allow complex queries to be constructed out of
367     simpler ones using the standard boolean connectives {\bf and}, {\bf
368     or}, {\bf not}. Parentheses can be used to alter the precedence of
369     the operators.
370    
371     \begin{center}
372     \begin{tabular}{|ll|}
373     \hline
374     {\bf logical operator} & {\bf equivalent operator} \\
375     \hline
376     and & ``\&'', ``\&\&'' \\
377     or & ``$|$'', ``$||$'', ``,'' \\
378     not & ``!'' \\
379     \hline
380     \end{tabular}
381     \end{center}
382    
383     \subsection{\label{appendixSection:name}Name expressions}
384    
385     \begin{center}
386 tim 2805 \begin{tabular}{|llp{2in}|}
387 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
388     of
389     examples} \\
390     \hline expression without ``.'' & select DMPC & select all
391     StuntDoubles
392     belonging to all DMPC molecules \\
393     & select C* & select all atoms which have atom types beginning with C
394     \\
395     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
396     only select the rigid bodies, and not the atoms belonging to them). \\
397     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
398     O\_TIP3P
399     atoms belonging to TIP3P molecules \\
400     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
401     the first
402     RigidBody in each DMPC molecule \\
403     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
404     molecule \\
405     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
406     select all atoms
407     belonging to all rigid bodies within all DMPC molecules \\
408     \hline
409     \end{tabular}
410     \end{center}
411    
412     \subsection{\label{appendixSection:index}Index expressions}
413    
414     \begin{center}
415     \begin{tabular}{|lp{4in}|}
416     \hline
417     {\bf examples} & {\bf translation of examples} \\
418     \hline
419     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
420     select 20 to 30 & select all of the StuntDoubles belonging to
421     molecules which have global indices between 20 (inclusive) and 30
422     (exclusive) \\
423     \hline
424     \end{tabular}
425     \end{center}
426    
427     \subsection{\label{appendixSection:predefined}Predefined sets}
428    
429     \begin{center}
430     \begin{tabular}{|ll|}
431     \hline
432     {\bf keyword} & {\bf description} \\
433     \hline
434     all & select all StuntDoubles \\
435     none & select none of the StuntDoubles \\
436     \hline
437     \end{tabular}
438     \end{center}
439    
440     \subsection{\label{appendixSection:userdefined}User-defined expressions}
441    
442     Users can define arbitrary terms to represent groups of
443     StuntDoubles, and then use the define terms in select commands. The
444     general form for the define command is: {\bf define {\it term
445 tim 2815 expression}}. Once defined, the user can specify such terms in
446     boolean expressions
447 tim 2730
448     {\tt define SSDWATER SSD or SSD1 or SSDRF}
449    
450     {\tt select SSDWATER}
451    
452     \subsection{\label{appendixSection:comparison}Comparison expressions}
453    
454     StuntDoubles can be selected by using comparision operators on their
455     properties. The general form for the comparison command is: a
456     property name, followed by a comparision operator and then a number.
457    
458     \begin{center}
459     \begin{tabular}{|l|l|}
460     \hline
461     {\bf property} & mass, charge \\
462     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
463     ``$<=$'', ``$!=$'' \\
464     \hline
465     \end{tabular}
466     \end{center}
467    
468     For example, the phrase {\tt select mass > 16.0 and charge < -2}
469 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
470 tim 2730 charges less than -2.
471    
472     \subsection{\label{appendixSection:within}Within expressions}
473    
474     The ``within'' keyword allows the user to select all StuntDoubles
475     within the specified distance (in Angstroms) from a selection,
476     including the selected atom itself. The general form for within
477     selection is: {\tt select within(distance, expression)}
478    
479     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
480     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
481     atoms.
482    
483    
484 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
485 tim 2730
486     \subsection{\label{appendixSection:StaticProps}StaticProps}
487    
488     {\tt StaticProps} can compute properties which are averaged over
489     some or all of the configurations that are contained within a dump
490     file. The most common example of a static property that can be
491     computed is the pair distribution function between atoms of type $A$
492 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
493     also be used to compute the density distributions of other molecules
494     in a reference frame {\it fixed to the body-fixed reference frame}
495 tim 2842 of a selected atom or rigid body. Due to the fact that the selected
496     StuntDoubles from two selections may be overlapped, {\tt
497     StaticProps} performs the calculation in three stages which are
498     illustrated in Fig.~\ref{oopseFig:staticPropsProcess}.
499 tim 2730
500 tim 2842 \begin{figure}
501     \centering
502     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
503     \caption[A representation of the three-stage correlations in
504     \texttt{StaticProps}]{This diagram illustrates three-stage
505     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
506     numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
507     -{}-sele2} respectively, while $C$ is the number of stuntdobules
508     appearing at both sets. The first stage($S_1-C$ and $S_2$) and
509     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
510     the contrary, the third stage($C$ and $C$) are completely
511     overlapping} \label{oopseFig:staticPropsProcess}
512     \end{figure}
513    
514 tim 2730 There are five seperate radial distribution functions availiable in
515     OOPSE. Since every radial distrbution function invlove the
516     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
517     -{}-sele2} must be specified to tell StaticProps which bodies to
518     include in the calculation.
519    
520     \begin{description}
521     \item[{\tt -{}-gofr}] Computes the pair distribution function,
522     \begin{equation*}
523     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
524     \sum_{j \in B} \delta(r - r_{ij}) \rangle
525     \end{equation*}
526     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
527     function. The angle is defined by the intermolecular vector
528     $\vec{r}$ and $z$-axis of DirectionalAtom A,
529     \begin{equation*}
530     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
531     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
532     \theta_{ij} - \cos \theta)\rangle
533     \end{equation*}
534     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
535     function. The angle is defined by the $z$-axes of the two
536     DirectionalAtoms A and B.
537     \begin{equation*}
538     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
539     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
540     \omega_{ij} - \cos \omega)\rangle
541     \end{equation*}
542     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
543     space $\theta, \omega$ defined by the two angles mentioned above.
544     \begin{equation*}
545     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
546     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
547     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
548     \omega)\rangle
549     \end{equation*}
550     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
551     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
552     and {\tt -{}-refsele} must be given to define A's internal
553     coordinate set as the reference frame for the calculation.
554     \end{description}
555    
556     The vectors (and angles) associated with these angular pair
557 tim 2842 distribution functions are most easily seen in
558     Fig.~\ref{oopseFig:gofr}
559 tim 2730
560     \begin{figure}
561     \centering
562 tim 2805 \includegraphics[width=3in]{definition.eps}
563 tim 2730 \caption[Definitions of the angles between directional objects]{ \\
564     Any two directional objects (DirectionalAtoms and RigidBodies) have
565     a set of two angles ($\theta$, and $\omega$) between the z-axes of
566     their body-fixed frames.} \label{oopseFig:gofr}
567     \end{figure}
568    
569     The options available for {\tt StaticProps} are as follows:
570     \begin{longtable}[c]{|EFG|}
571     \caption{StaticProps Command-line Options}
572     \\ \hline
573     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
574     \endhead
575     \hline
576     \endfoot
577     -h& {\tt -{}-help} & Print help and exit \\
578     -V& {\tt -{}-version} & Print version and exit \\
579 tim 2809 -i& {\tt -{}-input} & input dump file \\
580     -o& {\tt -{}-output} & output file name \\
581     -n& {\tt -{}-step} & process every n frame (default=`1') \\
582     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
583     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
584     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
585     & {\tt -{}-sele1} & select the first StuntDouble set \\
586     & {\tt -{}-sele2} & select the second StuntDouble set \\
587     & {\tt -{}-sele3} & select the third StuntDouble set \\
588     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
589     & {\tt -{}-molname} & molecule name \\
590     & {\tt -{}-begin} & begin internal index \\
591     & {\tt -{}-end} & end internal index \\
592 tim 2730 \hline
593     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
594     \hline
595     & {\tt -{}-gofr} & $g(r)$ \\
596     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
597     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
598     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
599     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
600     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
601     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
602     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
603     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
604     \end{longtable}
605    
606     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
607    
608     {\tt DynamicProps} computes time correlation functions from the
609     configurations stored in a dump file. Typical examples of time
610     correlation functions are the mean square displacement and the
611     velocity autocorrelation functions. Once again, the selection
612     syntax can be used to specify the StuntDoubles that will be used for
613     the calculation. A general time correlation function can be thought
614     of as:
615     \begin{equation}
616     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
617     \end{equation}
618     where $\vec{u}_A(t)$ is a vector property associated with an atom of
619     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
620     vector property associated with an atom of type $B$ at a different
621     time $t^{\prime}$. In most autocorrelation functions, the vector
622     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
623     $B$) are identical, and the three calculations built in to {\tt
624     DynamicProps} make these assumptions. It is possible, however, to
625     make simple modifications to the {\tt DynamicProps} code to allow
626     the use of {\it cross} time correlation functions (i.e. with
627     different vectors). The ability to use two selection scripts to
628     select different types of atoms is already present in the code.
629    
630 tim 2815 For large simulations, the trajectory files can sometimes reach
631 tim 2842 sizes in excess of several gigabytes. In order to prevent a
632     situation where the program runs out of memory due to large
633     trajectories, \texttt{dynamicProps} will estimate the size of free
634     memory at first, and determine the number of frames in each block,
635     which allows the operating system to load two blocks of data
636 tim 2815 simultaneously without swapping. Upon reading two blocks of the
637     trajectory, \texttt{dynamicProps} will calculate the time
638     correlation within the first block and the cross correlations
639     between the two blocks. This second block is then freed and then
640     incremented and the process repeated until the end of the
641     trajectory. Once the end is reached, the first block is freed then
642     incremented, until all frame pairs have been correlated in time.
643 tim 2816 This process is illustrated in
644     Fig.~\ref{oopseFig:dynamicPropsProcess}.
645 tim 2815
646 tim 2816 \begin{figure}
647     \centering
648     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
649     \caption[A representation of the block correlations in
650     \texttt{dynamicProps}]{This diagram illustrates block correlations
651     processing in \texttt{dynamicProps}. The shaded region represents
652     the self correlation of the block, and the open blocks are read one
653     at a time and the cross correlations between blocks are calculated.}
654     \label{oopseFig:dynamicPropsProcess}
655     \end{figure}
656    
657 tim 2730 The options available for DynamicProps are as follows:
658     \begin{longtable}[c]{|EFG|}
659     \caption{DynamicProps Command-line Options}
660     \\ \hline
661     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
662     \endhead
663     \hline
664     \endfoot
665     -h& {\tt -{}-help} & Print help and exit \\
666     -V& {\tt -{}-version} & Print version and exit \\
667 tim 2809 -i& {\tt -{}-input} & input dump file \\
668     -o& {\tt -{}-output} & output file name \\
669     & {\tt -{}-sele1} & select first StuntDouble set \\
670     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
671 tim 2730 \hline
672     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
673     \hline
674     -r& {\tt -{}-rcorr} & compute mean square displacement \\
675     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
676     -d& {\tt -{}-dcorr} & compute dipole correlation function
677     \end{longtable}
678    
679 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
680    
681     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
682    
683 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
684     which can be opened by other molecular dynamics viewers such as Jmol
685     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
686     as follows:
687 tim 2811
688    
689     \begin{longtable}[c]{|EFG|}
690     \caption{Dump2XYZ Command-line Options}
691     \\ \hline
692     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
693     \endhead
694     \hline
695     \endfoot
696     -h & {\tt -{}-help} & Print help and exit \\
697     -V & {\tt -{}-version} & Print version and exit \\
698     -i & {\tt -{}-input} & input dump file \\
699     -o & {\tt -{}-output} & output file name \\
700     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
701     -w & {\tt -{}-water} & skip the the waters (default=off) \\
702     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
703     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
704     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
705     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
706     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
707     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
708     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
709     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
710     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
711     converted. \\
712     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
713     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
714     \end{longtable}
715    
716 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
717 tim 2821
718     {\tt Hydro} can calculate resistance and diffusion tensors at the
719     center of resistance. Both tensors at the center of diffusion can
720     also be reported from the program, as well as the coordinates for
721     the beads which are used to approximate the arbitrary shapes. The
722     options available for Hydro are as follows:
723 tim 2811 \begin{longtable}[c]{|EFG|}
724     \caption{Hydrodynamics Command-line Options}
725     \\ \hline
726     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
727     \endhead
728     \hline
729     \endfoot
730     -h & {\tt -{}-help} & Print help and exit \\
731     -V & {\tt -{}-version} & Print version and exit \\
732     -i & {\tt -{}-input} & input dump file \\
733     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
734     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
735 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
736 tim 2811 \end{longtable}