ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2889
Committed: Mon Jun 26 13:42:53 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31532 byte(s)
Log Message:
Change the case caption of tables

File Contents

# User Rev Content
1 tim 2805 \appendix
2 tim 2815 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3 tim 2685
4 tim 2882 The absence of modern software development practices has been a
5     bottleneck limiting progress in the Scientific Computing
6     community\cite{Wilson2006}. In the last 20 years , a large number of
7     few MD packages\cite{Brooks1983, Vincent1995, Kale1999} were
8     developed to solve common MD problems and perform robust simulations
9     . Most of these are commercial programs that are either poorly
10     written or extremely complicated to use correctly. This situation
11     prevents researchers from reusing or extending those packages to do
12     cutting-edge research effectively. In the process of studying
13     structural and dynamic processes in condensed phase systems like
14     biological membranes and nanoparticles, we developed an open source
15 tim 2841 Object-Oriented Parallel Simulation Engine ({\sc OOPSE}). This new
16     molecular dynamics package has some unique features
17 tim 2815 \begin{enumerate}
18     \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
19     atom types (transition metals, point dipoles, sticky potentials,
20     Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
21     degrees of freedom), as well as rigid bodies.
22     \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
23     Beowulf clusters to obtain very efficient parallelism.
24     \item {\sc OOPSE} integrates the equations of motion using advanced methods for
25     orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
26     ensembles.
27     \item {\sc OOPSE} can carry out simulations on metallic systems using the
28     Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
29     \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
30     \item {\sc OOPSE} can simulate systems containing the extremely efficient
31     extended-Soft Sticky Dipole (SSD/E) model for water.
32     \end{enumerate}
33 tim 2688
34 tim 2812 \section{\label{appendixSection:architecture }Architecture}
35    
36 tim 2882 Mainly written by C++ and Fortran90, {\sc OOPSE} uses C++ Standard
37     Template Library (STL) and fortran modules as a foundation. As an
38     extensive set of the STL and Fortran90 modules, {\sc Base Classes}
39     provide generic implementations of mathematical objects (e.g.,
40     matrices, vectors, polynomials, random number generators) and
41     advanced data structures and algorithms(e.g., tuple, bitset, generic
42     data and string manipulation). The molecular data structures for the
43     representation of atoms, bonds, bends, torsions, rigid bodies and
44     molecules \textit{etc} are contained in the {\sc Kernel} which is
45     implemented with {\sc Base Classes} and are carefully designed to
46     provide maximum extensibility and flexibility. The functionality
47     required for applications is provided by the third layer which
48     contains Input/Output, Molecular Mechanics and Structure modules.
49     The Input/Output module not only implements general methods for file
50     handling, but also defines a generic force field interface. Another
51     important component of Input/Output module is the parser for
52     meta-data files, which has been implemented using the ANother Tool
53     for Language Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax.
54     The Molecular Mechanics module consists of energy minimization and a
55     wide varieties of integration methods(see
56     Chap.~\ref{chapt:methodology}). The structure module contains a
57     flexible and powerful selection library which syntax is elaborated
58     in Sec.~\ref{appendixSection:syntax}. The top layer is made of the
59     main program of the package, \texttt{oopse} and it corresponding
60     parallel version \texttt{oopse\_MPI}, as well as other useful
61     utilities, such as \texttt{StatProps} (see
62     Sec.~\ref{appendixSection:StaticProps}), \texttt{DynamicProps} (see
63     Sec.~\ref{appendixSection:DynamicProps}), \texttt{Dump2XYZ} (see
64     Sec.~\ref{appendixSection:Dump2XYZ}), \texttt{Hydro} (see
65     Sec.~\ref{appendixSection:hydrodynamics}) \textit{etc}.
66 tim 2815
67 tim 2812 \begin{figure}
68     \centering
69 tim 2813 \includegraphics[width=\linewidth]{architecture.eps}
70 tim 2815 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
71     of {\sc OOPSE}} \label{appendixFig:architecture}
72 tim 2812 \end{figure}
73    
74 tim 2882 \section{\label{appendixSection:desginPattern}Design Patterns}
75 tim 2685
76 tim 2688 Design patterns are optimal solutions to commonly-occurring problems
77     in software design. Although originated as an architectural concept
78 tim 2807 for buildings and towns by Christopher Alexander
79     \cite{Alexander1987}, software patterns first became popular with
80     the wide acceptance of the book, Design Patterns: Elements of
81     Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
82     the experience, knowledge and insights of developers who have
83     successfully used these patterns in their own work. Patterns are
84     reusable. They provide a ready-made solution that can be adapted to
85 tim 2882 different problems as necessary. As one of the latest advanced
86     techniques to emerge from object-oriented community, design patterns
87     were applied in some of the modern scientific software applications,
88     such as JMol, {\sc OOPSE}\cite{Meineke2005} and
89     PROTOMOL\cite{Matthey2004} \textit{etc}. The following sections
90     enumerates some of the patterns used in {\sc OOPSE}.
91 tim 2685
92 tim 2882 \subsection{\label{appendixSection:singleton}Singletons}
93 tim 2836
94 tim 2821 The Singleton pattern not only provides a mechanism to restrict
95     instantiation of a class to one object, but also provides a global
96 tim 2882 point of access to the object. Although the singleton pattern can be
97     implemented in various ways to account for different aspects of the
98     software designs, such as lifespan control \textit{etc}, we only use
99     the static data approach in {\sc OOPSE}. The declaration and
100 tim 2842 implementation of IntegratorFactory class are given by declared in
101     List.~\ref{appendixScheme:singletonDeclaration} and
102 tim 2880 Scheme.~\ref{appendixScheme:singletonImplementation} respectively.
103 tim 2882 Since the constructor is declared as protected, a client can not
104 tim 2842 instantiate IntegratorFactory directly. Moreover, since the member
105     function getInstance serves as the only entry of access to
106     IntegratorFactory, this approach fulfills the basic requirement, a
107     single instance. Another consequence of this approach is the
108     automatic destruction since static data are destroyed upon program
109     termination.
110 tim 2882
111     \subsection{\label{appendixSection:factoryMethod}Factory Methods}
112    
113     The Factory Method pattern is a creational pattern and deals with
114     the problem of creating objects without specifying the exact class
115     of object that will be created. Factory method is typically
116     implemented by delegating the creation operation to the subclasses.
117 tim 2883 One of the most popular Factory pattern is Parameterized Factory
118     pattern which creates products based on their identifiers (see
119     Scheme.~\ref{appendixScheme:factoryDeclaration}). If the identifier
120     has been already registered, the factory method will invoke the
121     corresponding creator (see
122 tim 2882 Scheme.~\ref{appendixScheme:integratorCreator}) which utilizes the
123     modern C++ template technique to avoid excess subclassing.
124    
125     \subsection{\label{appendixSection:visitorPattern}Visitor}
126    
127     The visitor pattern is designed to decouple the data structure and
128     algorithms used upon them by collecting related operation from
129     element classes into other visitor classes, which is equivalent to
130     adding virtual functions into a set of classes without modifying
131     their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
132     structure of a Visitor pattern which is used extensively in {\tt
133     Dump2XYZ}. In order to convert an OOPSE dump file, a series of
134     distinct operations are performed on different StuntDoubles (See the
135     class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
136     in Scheme.~\ref{appendixScheme:element}). Since the hierarchies
137     remain stable, it is easy to define a visit operation (see
138     Scheme.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
139     Note that using Composite pattern\cite{Gamma1994}, CompositeVisitor
140     manages a priority visitor list and handles the execution of every
141     visitor in the priority list on different StuntDoubles.
142    
143 tim 2835 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
144 tim 2693
145 tim 2882 class IntegratorFactory { public:
146     static IntegratorFactory* getInstance(); protected:
147 tim 2832 IntegratorFactory();
148     private:
149     static IntegratorFactory* instance_;
150 tim 2825 };
151    
152 tim 2821 \end{lstlisting}
153 tim 2836
154 tim 2835 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
155 tim 2821
156     IntegratorFactory::instance_ = NULL;
157    
158     IntegratorFactory* getInstance() {
159     if (instance_ == NULL){
160     instance_ = new IntegratorFactory;
161     }
162     return instance_;
163     }
164 tim 2825
165 tim 2821 \end{lstlisting}
166    
167 tim 2836 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
168    
169 tim 2882 class IntegratorFactory { public:
170 tim 2832 typedef std::map<string, IntegratorCreator*> CreatorMapType;
171 tim 2821
172 tim 2832 bool registerIntegrator(IntegratorCreator* creator) {
173     return creatorMap_.insert(creator->getIdent(), creator).second;
174     }
175 tim 2821
176 tim 2832 Integrator* createIntegrator(const string& id, SimInfo* info) {
177     Integrator* result = NULL;
178     CreatorMapType::iterator i = creatorMap_.find(id);
179     if (i != creatorMap_.end()) {
180     result = (i->second)->create(info);
181 tim 2831 }
182 tim 2832 return result;
183     }
184 tim 2825
185 tim 2832 private:
186     CreatorMapType creatorMap_;
187 tim 2825 };
188 tim 2821 \end{lstlisting}
189 tim 2836
190 tim 2835 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
191 tim 2821
192 tim 2825 class IntegratorCreator {
193 tim 2882 public:
194 tim 2823 IntegratorCreator(const string& ident) : ident_(ident) {}
195 tim 2822
196 tim 2823 const string& getIdent() const { return ident_; }
197 tim 2821
198     virtual Integrator* create(SimInfo* info) const = 0;
199    
200 tim 2832 private:
201 tim 2823 string ident_;
202 tim 2825 };
203 tim 2821
204 tim 2882 template<class ConcreteIntegrator> class IntegratorBuilder : public
205     IntegratorCreator {
206     public:
207     IntegratorBuilder(const string& ident)
208     : IntegratorCreator(ident) {}
209     virtual Integrator* create(SimInfo* info) const {
210     return new ConcreteIntegrator(info);
211     }
212 tim 2825 };
213 tim 2821 \end{lstlisting}
214    
215 tim 2836 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
216    
217 tim 2882 class StuntDouble {
218     public:
219     virtual void accept(BaseVisitor* v) = 0;
220 tim 2836 };
221    
222 tim 2882 class Atom: public StuntDouble {
223     public:
224     virtual void accept{BaseVisitor* v*} {
225     v->visit(this);
226     }
227 tim 2836 };
228    
229 tim 2882 class DirectionalAtom: public Atom {
230     public:
231     virtual void accept{BaseVisitor* v*} {
232     v->visit(this);
233     }
234 tim 2836 };
235    
236 tim 2882 class RigidBody: public StuntDouble {
237     public:
238     virtual void accept{BaseVisitor* v*} {
239     v->visit(this);
240     }
241 tim 2836 };
242    
243     \end{lstlisting}
244    
245 tim 2824 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
246 tim 2825
247     class BaseVisitor{
248 tim 2882 public:
249     virtual void visit(Atom* atom);
250     virtual void visit(DirectionalAtom* datom);
251     virtual void visit(RigidBody* rb);
252 tim 2825 };
253    
254 tim 2882 class BaseAtomVisitor:public BaseVisitor{
255     public:
256     virtual void visit(Atom* atom);
257     virtual void visit(DirectionalAtom* datom);
258     virtual void visit(RigidBody* rb);
259 tim 2835 };
260    
261 tim 2836 class CompositeVisitor: public BaseVisitor {
262 tim 2882 public:
263 tim 2836 typedef list<pair<BaseVisitor*, int> > VistorListType;
264     typedef VistorListType::iterator VisitorListIterator;
265     virtual void visit(Atom* atom) {
266     VisitorListIterator i;
267     BaseVisitor* curVisitor;
268 tim 2880 for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
269 tim 2836 atom->accept(*i);
270     }
271 tim 2832 }
272 tim 2821
273 tim 2836 virtual void visit(DirectionalAtom* datom) {
274     VisitorListIterator i;
275     BaseVisitor* curVisitor;
276 tim 2880 for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
277 tim 2836 atom->accept(*i);
278     }
279 tim 2832 }
280 tim 2821
281 tim 2836 virtual void visit(RigidBody* rb) {
282     VisitorListIterator i;
283     std::vector<Atom*> myAtoms;
284     std::vector<Atom*>::iterator ai;
285     myAtoms = rb->getAtoms();
286 tim 2882 for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
287 tim 2836 rb->accept(*i);
288     for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
289     (*ai)->accept(*i);
290 tim 2882 }
291 tim 2836 }
292    
293     void addVisitor(BaseVisitor* v, int priority);
294     protected:
295     VistorListType visitorList;
296 tim 2825 };
297 tim 2821 \end{lstlisting}
298 tim 2829
299 tim 2882 \begin{figure}
300     \centering
301     \includegraphics[width=\linewidth]{visitor.eps}
302     \caption[The UML class diagram of Visitor patten] {The UML class
303     diagram of Visitor patten.} \label{appendixFig:visitorUML}
304     \end{figure}
305    
306     \begin{figure}
307     \centering
308     \includegraphics[width=\linewidth]{hierarchy.eps}
309     \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
310     the class hierarchy. Objects below others on the diagram inherit
311     data structures and functions from their parent classes above them.}
312     \label{oopseFig:hierarchy}
313     \end{figure}
314    
315 tim 2730 \section{\label{appendixSection:concepts}Concepts}
316 tim 2685
317 tim 2829 OOPSE manipulates both traditional atoms as well as some objects
318     that {\it behave like atoms}. These objects can be rigid
319     collections of atoms or atoms which have orientational degrees of
320 tim 2836 freedom. A diagram of the class hierarchy is illustrated in
321     Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
322 tim 2829 DirectionalAtom in {\sc OOPSE} have their own names which are
323 tim 2882 specified in the meta data file. In contrast, RigidBodies are
324 tim 2829 denoted by their membership and index inside a particular molecule:
325     [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
326     on the specifics of the simulation). The names of rigid bodies are
327     generated automatically. For example, the name of the first rigid
328     body in a DMPC molecule is DMPC\_RB\_0.
329 tim 2838 \begin{itemize}
330     \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
331     integrators and minimizers.
332     \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
333     \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
334     \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
335     DirectionalAtom}s which behaves as a single unit.
336     \end{itemize}
337 tim 2688
338 tim 2730 \section{\label{appendixSection:syntax}Syntax of the Select Command}
339    
340 tim 2837 {\sc OOPSE} provides a powerful selection utility to select
341     StuntDoubles. The most general form of the select command is:
342 tim 2730
343 tim 2837 {\tt select {\it expression}}.
344    
345     This expression represents an arbitrary set of StuntDoubles (Atoms
346     or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
347     name expressions, index expressions, predefined sets, user-defined
348     expressions, comparison operators, within expressions, or logical
349     combinations of the above expression types. Expressions can be
350     combined using parentheses and the Boolean operators.
351    
352 tim 2730 \subsection{\label{appendixSection:logical}Logical expressions}
353    
354     The logical operators allow complex queries to be constructed out of
355     simpler ones using the standard boolean connectives {\bf and}, {\bf
356     or}, {\bf not}. Parentheses can be used to alter the precedence of
357     the operators.
358    
359     \begin{center}
360     \begin{tabular}{|ll|}
361     \hline
362     {\bf logical operator} & {\bf equivalent operator} \\
363     \hline
364     and & ``\&'', ``\&\&'' \\
365     or & ``$|$'', ``$||$'', ``,'' \\
366     not & ``!'' \\
367     \hline
368     \end{tabular}
369     \end{center}
370    
371     \subsection{\label{appendixSection:name}Name expressions}
372    
373     \begin{center}
374 tim 2805 \begin{tabular}{|llp{2in}|}
375 tim 2730 \hline {\bf type of expression} & {\bf examples} & {\bf translation
376     of
377     examples} \\
378     \hline expression without ``.'' & select DMPC & select all
379     StuntDoubles
380     belonging to all DMPC molecules \\
381     & select C* & select all atoms which have atom types beginning with C
382     \\
383     & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
384     only select the rigid bodies, and not the atoms belonging to them). \\
385     \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
386     O\_TIP3P
387     atoms belonging to TIP3P molecules \\
388     & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
389     the first
390     RigidBody in each DMPC molecule \\
391     & select DMPC.20 & select the twentieth StuntDouble in each DMPC
392     molecule \\
393     \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
394     select all atoms
395     belonging to all rigid bodies within all DMPC molecules \\
396     \hline
397     \end{tabular}
398     \end{center}
399    
400     \subsection{\label{appendixSection:index}Index expressions}
401    
402     \begin{center}
403     \begin{tabular}{|lp{4in}|}
404     \hline
405     {\bf examples} & {\bf translation of examples} \\
406     \hline
407     select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
408     select 20 to 30 & select all of the StuntDoubles belonging to
409     molecules which have global indices between 20 (inclusive) and 30
410     (exclusive) \\
411     \hline
412     \end{tabular}
413     \end{center}
414    
415     \subsection{\label{appendixSection:predefined}Predefined sets}
416    
417     \begin{center}
418     \begin{tabular}{|ll|}
419     \hline
420     {\bf keyword} & {\bf description} \\
421     \hline
422     all & select all StuntDoubles \\
423     none & select none of the StuntDoubles \\
424     \hline
425     \end{tabular}
426     \end{center}
427    
428     \subsection{\label{appendixSection:userdefined}User-defined expressions}
429    
430     Users can define arbitrary terms to represent groups of
431     StuntDoubles, and then use the define terms in select commands. The
432     general form for the define command is: {\bf define {\it term
433 tim 2815 expression}}. Once defined, the user can specify such terms in
434     boolean expressions
435 tim 2730
436     {\tt define SSDWATER SSD or SSD1 or SSDRF}
437    
438     {\tt select SSDWATER}
439    
440     \subsection{\label{appendixSection:comparison}Comparison expressions}
441    
442     StuntDoubles can be selected by using comparision operators on their
443     properties. The general form for the comparison command is: a
444     property name, followed by a comparision operator and then a number.
445    
446     \begin{center}
447     \begin{tabular}{|l|l|}
448     \hline
449     {\bf property} & mass, charge \\
450     {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
451     ``$<=$'', ``$!=$'' \\
452     \hline
453     \end{tabular}
454     \end{center}
455    
456     For example, the phrase {\tt select mass > 16.0 and charge < -2}
457 tim 2805 would select StuntDoubles which have mass greater than 16.0 and
458 tim 2730 charges less than -2.
459    
460     \subsection{\label{appendixSection:within}Within expressions}
461    
462     The ``within'' keyword allows the user to select all StuntDoubles
463     within the specified distance (in Angstroms) from a selection,
464     including the selected atom itself. The general form for within
465     selection is: {\tt select within(distance, expression)}
466    
467     For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
468     select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
469     atoms.
470    
471    
472 tim 2811 \section{\label{appendixSection:analysisFramework}Analysis Framework}
473 tim 2730
474     \subsection{\label{appendixSection:StaticProps}StaticProps}
475    
476     {\tt StaticProps} can compute properties which are averaged over
477     some or all of the configurations that are contained within a dump
478     file. The most common example of a static property that can be
479     computed is the pair distribution function between atoms of type $A$
480 tim 2815 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
481     also be used to compute the density distributions of other molecules
482     in a reference frame {\it fixed to the body-fixed reference frame}
483 tim 2842 of a selected atom or rigid body. Due to the fact that the selected
484     StuntDoubles from two selections may be overlapped, {\tt
485     StaticProps} performs the calculation in three stages which are
486     illustrated in Fig.~\ref{oopseFig:staticPropsProcess}.
487 tim 2730
488 tim 2842 \begin{figure}
489     \centering
490     \includegraphics[width=\linewidth]{staticPropsProcess.eps}
491     \caption[A representation of the three-stage correlations in
492     \texttt{StaticProps}]{This diagram illustrates three-stage
493     processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
494 tim 2882 numbers of selected StuntDobules from {\tt -{}-sele1} and {\tt
495     -{}-sele2} respectively, while $C$ is the number of StuntDobules
496 tim 2842 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
497     second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
498     the contrary, the third stage($C$ and $C$) are completely
499     overlapping} \label{oopseFig:staticPropsProcess}
500     \end{figure}
501    
502 tim 2882 \begin{figure}
503     \centering
504     \includegraphics[width=3in]{definition.eps}
505     \caption[Definitions of the angles between directional objects]{Any
506     two directional objects (DirectionalAtoms and RigidBodies) have a
507     set of two angles ($\theta$, and $\omega$) between the z-axes of
508     their body-fixed frames.} \label{oopseFig:gofr}
509     \end{figure}
510    
511 tim 2730 There are five seperate radial distribution functions availiable in
512     OOPSE. Since every radial distrbution function invlove the
513     calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
514     -{}-sele2} must be specified to tell StaticProps which bodies to
515     include in the calculation.
516    
517     \begin{description}
518     \item[{\tt -{}-gofr}] Computes the pair distribution function,
519     \begin{equation*}
520     g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
521     \sum_{j \in B} \delta(r - r_{ij}) \rangle
522     \end{equation*}
523     \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
524     function. The angle is defined by the intermolecular vector
525     $\vec{r}$ and $z$-axis of DirectionalAtom A,
526     \begin{equation*}
527     g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
528     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
529     \theta_{ij} - \cos \theta)\rangle
530     \end{equation*}
531     \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
532     function. The angle is defined by the $z$-axes of the two
533     DirectionalAtoms A and B.
534     \begin{equation*}
535     g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
536     \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
537     \omega_{ij} - \cos \omega)\rangle
538     \end{equation*}
539     \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
540     space $\theta, \omega$ defined by the two angles mentioned above.
541     \begin{equation*}
542     g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
543     \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
544     \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
545     \omega)\rangle
546     \end{equation*}
547     \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
548     B in the body frame of particle A. Therefore, {\tt -{}-originsele}
549     and {\tt -{}-refsele} must be given to define A's internal
550     coordinate set as the reference frame for the calculation.
551     \end{description}
552    
553     The vectors (and angles) associated with these angular pair
554 tim 2842 distribution functions are most easily seen in
555 tim 2882 Fig.~\ref{oopseFig:gofr}.
556 tim 2730
557     The options available for {\tt StaticProps} are as follows:
558     \begin{longtable}[c]{|EFG|}
559 tim 2889 \caption{STATICPROPS COMMAND-LINE OPTIONS}
560 tim 2730 \\ \hline
561     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
562     \endhead
563     \hline
564     \endfoot
565     -h& {\tt -{}-help} & Print help and exit \\
566     -V& {\tt -{}-version} & Print version and exit \\
567 tim 2809 -i& {\tt -{}-input} & input dump file \\
568     -o& {\tt -{}-output} & output file name \\
569     -n& {\tt -{}-step} & process every n frame (default=`1') \\
570     -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
571     -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
572     -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
573     & {\tt -{}-sele1} & select the first StuntDouble set \\
574     & {\tt -{}-sele2} & select the second StuntDouble set \\
575     & {\tt -{}-sele3} & select the third StuntDouble set \\
576     & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
577     & {\tt -{}-molname} & molecule name \\
578     & {\tt -{}-begin} & begin internal index \\
579     & {\tt -{}-end} & end internal index \\
580 tim 2730 \hline
581     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
582     \hline
583     & {\tt -{}-gofr} & $g(r)$ \\
584     & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
585     & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
586     & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
587     & {\tt -{}-gxyz} & $g(x, y, z)$ \\
588     & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
589     & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
590     & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
591     & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
592     \end{longtable}
593    
594     \subsection{\label{appendixSection:DynamicProps}DynamicProps}
595    
596     {\tt DynamicProps} computes time correlation functions from the
597     configurations stored in a dump file. Typical examples of time
598     correlation functions are the mean square displacement and the
599     velocity autocorrelation functions. Once again, the selection
600     syntax can be used to specify the StuntDoubles that will be used for
601     the calculation. A general time correlation function can be thought
602     of as:
603     \begin{equation}
604     C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
605     \end{equation}
606     where $\vec{u}_A(t)$ is a vector property associated with an atom of
607     type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
608     vector property associated with an atom of type $B$ at a different
609     time $t^{\prime}$. In most autocorrelation functions, the vector
610     properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
611     $B$) are identical, and the three calculations built in to {\tt
612     DynamicProps} make these assumptions. It is possible, however, to
613     make simple modifications to the {\tt DynamicProps} code to allow
614     the use of {\it cross} time correlation functions (i.e. with
615     different vectors). The ability to use two selection scripts to
616     select different types of atoms is already present in the code.
617    
618 tim 2815 For large simulations, the trajectory files can sometimes reach
619 tim 2842 sizes in excess of several gigabytes. In order to prevent a
620     situation where the program runs out of memory due to large
621 tim 2882 trajectories, \texttt{dynamicProps} will first estimate the size of
622     free memory, and determine the number of frames in each block, which
623     will allow the operating system to load two blocks of data
624 tim 2815 simultaneously without swapping. Upon reading two blocks of the
625     trajectory, \texttt{dynamicProps} will calculate the time
626     correlation within the first block and the cross correlations
627     between the two blocks. This second block is then freed and then
628     incremented and the process repeated until the end of the
629     trajectory. Once the end is reached, the first block is freed then
630     incremented, until all frame pairs have been correlated in time.
631 tim 2816 This process is illustrated in
632     Fig.~\ref{oopseFig:dynamicPropsProcess}.
633 tim 2815
634 tim 2816 \begin{figure}
635     \centering
636     \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
637     \caption[A representation of the block correlations in
638     \texttt{dynamicProps}]{This diagram illustrates block correlations
639     processing in \texttt{dynamicProps}. The shaded region represents
640     the self correlation of the block, and the open blocks are read one
641     at a time and the cross correlations between blocks are calculated.}
642     \label{oopseFig:dynamicPropsProcess}
643     \end{figure}
644    
645 tim 2730 The options available for DynamicProps are as follows:
646     \begin{longtable}[c]{|EFG|}
647 tim 2889 \caption{DYNAMICPROPS COMMAND-LINE OPTIONS}
648 tim 2730 \\ \hline
649     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
650     \endhead
651     \hline
652     \endfoot
653     -h& {\tt -{}-help} & Print help and exit \\
654     -V& {\tt -{}-version} & Print version and exit \\
655 tim 2809 -i& {\tt -{}-input} & input dump file \\
656     -o& {\tt -{}-output} & output file name \\
657     & {\tt -{}-sele1} & select first StuntDouble set \\
658     & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
659 tim 2730 \hline
660     \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
661     \hline
662     -r& {\tt -{}-rcorr} & compute mean square displacement \\
663     -v& {\tt -{}-vcorr} & compute velocity correlation function \\
664     -d& {\tt -{}-dcorr} & compute dipole correlation function
665     \end{longtable}
666    
667 tim 2811 \section{\label{appendixSection:tools}Other Useful Utilities}
668    
669     \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
670    
671 tim 2821 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
672     which can be opened by other molecular dynamics viewers such as Jmol
673     and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
674     as follows:
675 tim 2811
676     \begin{longtable}[c]{|EFG|}
677 tim 2889 \caption{DUMP2XYZ COMMAND-LINE OPTIONS}
678 tim 2811 \\ \hline
679     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
680     \endhead
681     \hline
682     \endfoot
683     -h & {\tt -{}-help} & Print help and exit \\
684     -V & {\tt -{}-version} & Print version and exit \\
685     -i & {\tt -{}-input} & input dump file \\
686     -o & {\tt -{}-output} & output file name \\
687     -n & {\tt -{}-frame} & print every n frame (default=`1') \\
688     -w & {\tt -{}-water} & skip the the waters (default=off) \\
689     -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
690     -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
691     -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
692     -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
693     -b & {\tt -{}-basetype} & using base atom type (default=off) \\
694     & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
695     & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
696     & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
697     -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
698     converted. \\
699     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
700     & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
701     \end{longtable}
702    
703 tim 2815 \subsection{\label{appendixSection:hydrodynamics}Hydro}
704 tim 2821
705     {\tt Hydro} can calculate resistance and diffusion tensors at the
706     center of resistance. Both tensors at the center of diffusion can
707     also be reported from the program, as well as the coordinates for
708     the beads which are used to approximate the arbitrary shapes. The
709     options available for Hydro are as follows:
710 tim 2811 \begin{longtable}[c]{|EFG|}
711 tim 2889 \caption{HYDRODYNAMICS COMMAND-LINE OPTIONS}
712 tim 2811 \\ \hline
713     {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
714     \endhead
715     \hline
716     \endfoot
717     -h & {\tt -{}-help} & Print help and exit \\
718     -V & {\tt -{}-version} & Print version and exit \\
719     -i & {\tt -{}-input} & input dump file \\
720     -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
721     -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
722 tim 2815 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
723 tim 2811 \end{longtable}