ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2729 by tim, Wed Apr 5 03:44:32 2006 UTC vs.
Revision 2730 by tim, Mon Apr 24 18:49:32 2006 UTC

# Line 76 | Line 76 | that you are operating on.
76  
77   \section{\label{appendixSection:analysisFramework}Analysis Framework}
78  
79 < \section{\label{appendixSection:hierarchy}Hierarchy}
79 > \section{\label{appendixSection:concepts}Concepts}
80  
81 < \subsection{\label{appendixSection:selectionSyntax}Selection Syntax}
81 > OOPSE manipulates both traditional atoms as well as some objects
82 > that {\it behave like atoms}.  These objects can be rigid
83 > collections of atoms or atoms which have orientational degrees of
84 > freedom.  Here is a diagram of the class heirarchy:
85  
86 < \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}
86 > \begin{figure}
87 > \centering
88 > \includegraphics[width=3in]{heirarchy.pdf}
89 > \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
90 > The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
91 > selection syntax allows the user to select any of the objects that
92 > are descended from a StuntDouble.} \label{oopseFig:heirarchy}
93 > \end{figure}
94  
95 < \subsection{\label{appendixSection:staticProps}Static Properties}
95 > \begin{itemize}
96 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
97 > integrators and minimizers.
98 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
99 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
100 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
101 > DirectionalAtom}s which behaves as a single unit.
102 > \end{itemize}
103  
104 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
104 > Every Molecule, Atom and DirectionalAtom in {\sc oopse} have their
105 > own names which are specified in the {\tt .md} file. In contrast,
106 > RigidBodies are denoted by their membership and index inside a
107 > particular molecule: [MoleculeName]\_RB\_[index] (the contents
108 > inside the brackets depend on the specifics of the simulation). The
109 > names of rigid bodies are generated automatically. For example, the
110 > name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
111 >
112 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
113 >
114 > The most general form of the select command is: {\tt select {\it
115 > expression}}
116 >
117 > This expression represents an arbitrary set of StuntDoubles (Atoms
118 > or RigidBodies) in {\sc oopse}. Expressions are composed of either
119 > name expressions, index expressions, predefined sets, user-defined
120 > expressions, comparison operators, within expressions, or logical
121 > combinations of the above expression types. Expressions can be
122 > combined using parentheses and the Boolean operators.
123 >
124 > \subsection{\label{appendixSection:logical}Logical expressions}
125 >
126 > The logical operators allow complex queries to be constructed out of
127 > simpler ones using the standard boolean connectives {\bf and}, {\bf
128 > or}, {\bf not}. Parentheses can be used to alter the precedence of
129 > the operators.
130 >
131 > \begin{center}
132 > \begin{tabular}{|ll|}
133 > \hline
134 > {\bf logical operator} & {\bf equivalent operator}  \\
135 > \hline
136 > and & ``\&'', ``\&\&'' \\
137 > or & ``$|$'', ``$||$'', ``,'' \\
138 > not & ``!''  \\
139 > \hline
140 > \end{tabular}
141 > \end{center}
142 >
143 > \subsection{\label{appendixSection:name}Name expressions}
144 >
145 > \begin{center}
146 > \begin{tabular}{|llp{3in}|}
147 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
148 > of
149 > examples} \\
150 > \hline expression without ``.'' & select DMPC & select all
151 > StuntDoubles
152 > belonging to all DMPC molecules \\
153 > & select C* & select all atoms which have atom types beginning with C
154 > \\
155 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
156 > only select the rigid bodies, and not the atoms belonging to them). \\
157 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
158 > O\_TIP3P
159 > atoms belonging to TIP3P molecules \\
160 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
161 > the first
162 > RigidBody in each DMPC molecule \\
163 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
164 > molecule \\
165 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
166 > select all atoms
167 > belonging to all rigid bodies within all DMPC molecules \\
168 > \hline
169 > \end{tabular}
170 > \end{center}
171 >
172 > \subsection{\label{appendixSection:index}Index expressions}
173 >
174 > \begin{center}
175 > \begin{tabular}{|lp{4in}|}
176 > \hline
177 > {\bf examples} & {\bf translation of examples} \\
178 > \hline
179 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
180 > select 20 to 30 & select all of the StuntDoubles belonging to
181 > molecules which have global indices between 20 (inclusive) and 30
182 > (exclusive) \\
183 > \hline
184 > \end{tabular}
185 > \end{center}
186 >
187 > \subsection{\label{appendixSection:predefined}Predefined sets}
188 >
189 > \begin{center}
190 > \begin{tabular}{|ll|}
191 > \hline
192 > {\bf keyword} & {\bf description} \\
193 > \hline
194 > all & select all StuntDoubles \\
195 > none & select none of the StuntDoubles \\
196 > \hline
197 > \end{tabular}
198 > \end{center}
199 >
200 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
201 >
202 > Users can define arbitrary terms to represent groups of
203 > StuntDoubles, and then use the define terms in select commands. The
204 > general form for the define command is: {\bf define {\it term
205 > expression}}
206 >
207 > Once defined, the user can specify such terms in boolean expressions
208 >
209 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
210 >
211 > {\tt select SSDWATER}
212 >
213 > \subsection{\label{appendixSection:comparison}Comparison expressions}
214 >
215 > StuntDoubles can be selected by using comparision operators on their
216 > properties. The general form for the comparison command is: a
217 > property name, followed by a comparision operator and then a number.
218 >
219 > \begin{center}
220 > \begin{tabular}{|l|l|}
221 > \hline
222 > {\bf property} & mass, charge \\
223 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
224 > ``$<=$'', ``$!=$'' \\
225 > \hline
226 > \end{tabular}
227 > \end{center}
228 >
229 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
230 > wouldselect StuntDoubles which have mass greater than 16.0 and
231 > charges less than -2.
232 >
233 > \subsection{\label{appendixSection:within}Within expressions}
234 >
235 > The ``within'' keyword allows the user to select all StuntDoubles
236 > within the specified distance (in Angstroms) from a selection,
237 > including the selected atom itself. The general form for within
238 > selection is: {\tt select within(distance, expression)}
239 >
240 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
241 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
242 > atoms.
243 >
244 > \section{\label{appendixSection:tools}Tools which use the selection command}
245 >
246 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
247 >
248 > Dump2XYZ can transform an OOPSE dump file into a xyz file which can
249 > be opened by other molecular dynamics viewers such as Jmol and VMD.
250 > The options available for Dump2XYZ are as follows:
251 >
252 >
253 > \begin{longtable}[c]{|EFG|}
254 > \caption{Dump2XYZ Command-line Options}
255 > \\ \hline
256 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
257 > \endhead
258 > \hline
259 > \endfoot
260 >  -h & {\tt -{}-help} &                        Print help and exit \\
261 >  -V & {\tt -{}-version} &                     Print version and exit \\
262 >  -i & {\tt -{}-input=filename}  &             input dump file \\
263 >  -o & {\tt -{}-output=filename} &             output file name \\
264 >  -n & {\tt -{}-frame=INT}   &                 print every n frame  (default=`1') \\
265 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
266 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
267 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
268 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
269 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
270 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
271 >     & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
272 >     & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
273 >     &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
274 >  -s & {\tt -{}-selection=selection script} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
275 > converted. \\
276 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
277 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
278 > \end{longtable}
279 >
280 >
281 > \subsection{\label{appendixSection:StaticProps}StaticProps}
282 >
283 > {\tt StaticProps} can compute properties which are averaged over
284 > some or all of the configurations that are contained within a dump
285 > file. The most common example of a static property that can be
286 > computed is the pair distribution function between atoms of type $A$
287 > and other atoms of type $B$, $g_{AB}(r)$.  StaticProps can also be
288 > used to compute the density distributions of other molecules in a
289 > reference frame {\it fixed to the body-fixed reference frame} of a
290 > selected atom or rigid body.
291 >
292 > There are five seperate radial distribution functions availiable in
293 > OOPSE. Since every radial distrbution function invlove the
294 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
295 > -{}-sele2} must be specified to tell StaticProps which bodies to
296 > include in the calculation.
297 >
298 > \begin{description}
299 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
300 > \begin{equation*}
301 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
302 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
303 > \end{equation*}
304 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
305 > function. The angle is defined by the intermolecular vector
306 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
307 > \begin{equation*}
308 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
309 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
310 > \theta_{ij} - \cos \theta)\rangle
311 > \end{equation*}
312 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
313 > function. The angle is defined by the $z$-axes of the two
314 > DirectionalAtoms A and B.
315 > \begin{equation*}
316 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
317 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
318 > \omega_{ij} - \cos \omega)\rangle
319 > \end{equation*}
320 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
321 > space $\theta, \omega$ defined by the two angles mentioned above.
322 > \begin{equation*}
323 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
324 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
325 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
326 > \omega)\rangle
327 > \end{equation*}
328 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
329 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
330 > and {\tt -{}-refsele} must be given to define A's internal
331 > coordinate set as the reference frame for the calculation.
332 > \end{description}
333 >
334 > The vectors (and angles) associated with these angular pair
335 > distribution functions are most easily seen in the figure below:
336 >
337 > \begin{figure}
338 > \centering
339 > \includegraphics[width=3in]{definition.pdf}
340 > \caption[Definitions of the angles between directional objects]{ \\
341 > Any two directional objects (DirectionalAtoms and RigidBodies) have
342 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
343 > their body-fixed frames.} \label{oopseFig:gofr}
344 > \end{figure}
345 >
346 > The options available for {\tt StaticProps} are as follows:
347 > \begin{longtable}[c]{|EFG|}
348 > \caption{StaticProps Command-line Options}
349 > \\ \hline
350 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
351 > \endhead
352 > \hline
353 > \endfoot
354 >  -h& {\tt -{}-help}                    &  Print help and exit \\
355 >  -V& {\tt -{}-version}                 &  Print version and exit \\
356 >  -i& {\tt -{}-input=filename}          &  input dump file \\
357 >  -o& {\tt -{}-output=filename}         &  output file name \\
358 >  -n& {\tt -{}-step=INT}                &  process every n frame  (default=`1') \\
359 >  -r& {\tt -{}-nrbins=INT}              &  number of bins for distance  (default=`100') \\
360 >  -a& {\tt -{}-nanglebins=INT}          &  number of bins for cos(angle)  (default= `50') \\
361 >  -l& {\tt -{}-length=DOUBLE}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
362 >    & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
363 >    & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
364 >    & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
365 >    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
366 >    & {\tt -{}-molname=STRING}           & molecule name \\
367 >    & {\tt -{}-begin=INT}                & begin internal index \\
368 >    & {\tt -{}-end=INT}                  & end internal index \\
369 > \hline
370 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
371 > \hline
372 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
373 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
374 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
375 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
376 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
377 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
378 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
379 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
380 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
381 > \end{longtable}
382 >
383 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
384 >
385 > {\tt DynamicProps} computes time correlation functions from the
386 > configurations stored in a dump file.  Typical examples of time
387 > correlation functions are the mean square displacement and the
388 > velocity autocorrelation functions.   Once again, the selection
389 > syntax can be used to specify the StuntDoubles that will be used for
390 > the calculation.  A general time correlation function can be thought
391 > of as:
392 > \begin{equation}
393 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
394 > \end{equation}
395 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
396 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
397 > vector property associated with an atom of type $B$ at a different
398 > time $t^{\prime}$.  In most autocorrelation functions, the vector
399 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
400 > $B$) are identical, and the three calculations built in to {\tt
401 > DynamicProps} make these assumptions.  It is possible, however, to
402 > make simple modifications to the {\tt DynamicProps} code to allow
403 > the use of {\it cross} time correlation functions (i.e. with
404 > different vectors).  The ability to use two selection scripts to
405 > select different types of atoms is already present in the code.
406 >
407 > The options available for DynamicProps are as follows:
408 > \begin{longtable}[c]{|EFG|}
409 > \caption{DynamicProps Command-line Options}
410 > \\ \hline
411 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
412 > \endhead
413 > \hline
414 > \endfoot
415 >  -h& {\tt -{}-help}                   & Print help and exit \\
416 >  -V& {\tt -{}-version}                & Print version and exit \\
417 >  -i& {\tt -{}-input=filename}         & input dump file \\
418 >  -o& {\tt -{}-output=filename}        & output file name \\
419 >    & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
420 >    & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
421 > \hline
422 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
423 > \hline
424 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
425 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
426 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
427 > \end{longtable}
428 >
429 > \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines