ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2823
Committed: Thu Jun 8 07:34:15 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 30867 byte(s)
Log Message:
minor fixes

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern not only provides a mechanism to restrict
122 instantiation of a class to one object, but also provides a global
123 point of access to the object. Currently implemented as a global
124 variable, the logging utility which reports error and warning
125 messages to the console in {\sc OOPSE} is a good candidate for
126 applying the Singleton pattern to avoid the global namespace
127 pollution.Although the singleton pattern can be implemented in
128 various ways to account for different aspects of the software
129 designs, such as lifespan control \textit{etc}, we only use the
130 static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 is declared as
132 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133
134 class IntegratorFactory {
135 public:
136 static IntegratorFactory* getInstance();
137 protected:
138 IntegratorFactory();
139 private:
140 static IntegratorFactory* instance_;
141 };
142 \end{lstlisting}
143 The corresponding implementation is
144 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145
146 IntegratorFactory::instance_ = NULL;
147
148 IntegratorFactory* getInstance() {
149 if (instance_ == NULL){
150 instance_ = new IntegratorFactory;
151 }
152 return instance_;
153 }
154 \end{lstlisting}
155 Since constructor is declared as {\tt protected}, a client can not
156 instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 member function {\tt getInstance} serves as the only entry of access
158 to {\tt IntegratorFactory}, this approach fulfills the basic
159 requirement, a single instance. Another consequence of this approach
160 is the automatic destruction since static data are destroyed upon
161 program termination.
162
163 \subsection{\label{appendixSection:factoryMethod}Factory Method}
164
165 Categoried as a creational pattern, the Factory Method pattern deals
166 with the problem of creating objects without specifying the exact
167 class of object that will be created. Factory Method is typically
168 implemented by delegating the creation operation to the subclasses.
169
170 Registers a creator with a type identifier. Looks up the type
171 identifier in the internal map. If it is found, it invokes the
172 corresponding creator for the type identifier and returns its
173 result.
174 \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
175 class IntegratorCreator;
176 class IntegratorFactory {
177 public:
178 typedef std::map<string, IntegratorCreator*> CreatorMapType;
179
180 bool registerIntegrator(IntegratorCreator* creator);
181
182 Integrator* createIntegrator(const string& id, SimInfo* info);
183
184 private:
185 CreatorMapType creatorMap_;
186 };
187 \end{lstlisting}
188
189 \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
190 bool IntegratorFactory::unregisterIntegrator(const string& id) {
191 return creatorMap_.erase(id) == 1;
192 }
193
194 Integrator*
195 IntegratorFactory::createIntegrator(const string& id, SimInfo* info) {
196 CreatorMapType::iterator i = creatorMap_.find(id);
197 if (i != creatorMap_.end()) {
198 //invoke functor to create object
199 return (i->second)->create(info);
200 } else {
201 return NULL;
202 }
203 }
204 \end{lstlisting}
205
206 \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
207
208 class IntegratorCreator {
209 public:
210 IntegratorCreator(const string& ident) : ident_(ident) {}
211
212 const string& getIdent() const { return ident_; }
213
214 virtual Integrator* create(SimInfo* info) const = 0;
215
216 private:
217 string ident_;
218 };
219
220 template<class ConcreteIntegrator>
221 class IntegratorBuilder : public IntegratorCreator {
222 public:
223 IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
224 virtual Integrator* create(SimInfo* info) const {
225 return new ConcreteIntegrator(info);
226 }
227 };
228 \end{lstlisting}
229
230 \subsection{\label{appendixSection:visitorPattern}Visitor}
231
232 The purpose of the Visitor Pattern is to encapsulate an operation
233 that you want to perform on the elements of a data structure. In
234 this way, you can change the operation being performed on a
235 structure without the need of changing the class heirarchy of the
236 elements that you are operating on.
237
238 \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
239 class BaseVisitor{
240 public:
241 virtual void visit(Atom* atom);
242 virtual void visit(DirectionalAtom* datom);
243 virtual void visit(RigidBody* rb);
244 };
245 \end{lstlisting}
246 \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
247 class StuntDouble {
248 public:
249 virtual void accept(BaseVisitor* v) = 0;
250 };
251
252 class Atom: public StuntDouble {
253 public:
254 virtual void accept{BaseVisitor* v*} {v->visit(this);}
255 };
256
257 class DirectionalAtom: public Atom {
258 public:
259 virtual void accept{BaseVisitor* v*} {v->visit(this);}
260 };
261
262 class RigidBody: public StuntDouble {
263 public:
264 virtual void accept{BaseVisitor* v*} {v->visit(this);}
265 };
266
267 \end{lstlisting}
268 \section{\label{appendixSection:concepts}Concepts}
269
270 OOPSE manipulates both traditional atoms as well as some objects
271 that {\it behave like atoms}. These objects can be rigid
272 collections of atoms or atoms which have orientational degrees of
273 freedom. Here is a diagram of the class heirarchy:
274
275 %\begin{figure}
276 %\centering
277 %\includegraphics[width=3in]{heirarchy.eps}
278 %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
279 %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
280 %selection syntax allows the user to select any of the objects that
281 %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
282 %\end{figure}
283
284 \begin{itemize}
285 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
286 integrators and minimizers.
287 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
288 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
289 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
290 DirectionalAtom}s which behaves as a single unit.
291 \end{itemize}
292
293 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
294 own names which are specified in the {\tt .md} file. In contrast,
295 RigidBodies are denoted by their membership and index inside a
296 particular molecule: [MoleculeName]\_RB\_[index] (the contents
297 inside the brackets depend on the specifics of the simulation). The
298 names of rigid bodies are generated automatically. For example, the
299 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
300
301 \section{\label{appendixSection:syntax}Syntax of the Select Command}
302
303 The most general form of the select command is: {\tt select {\it
304 expression}}. This expression represents an arbitrary set of
305 StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
306 composed of either name expressions, index expressions, predefined
307 sets, user-defined expressions, comparison operators, within
308 expressions, or logical combinations of the above expression types.
309 Expressions can be combined using parentheses and the Boolean
310 operators.
311
312 \subsection{\label{appendixSection:logical}Logical expressions}
313
314 The logical operators allow complex queries to be constructed out of
315 simpler ones using the standard boolean connectives {\bf and}, {\bf
316 or}, {\bf not}. Parentheses can be used to alter the precedence of
317 the operators.
318
319 \begin{center}
320 \begin{tabular}{|ll|}
321 \hline
322 {\bf logical operator} & {\bf equivalent operator} \\
323 \hline
324 and & ``\&'', ``\&\&'' \\
325 or & ``$|$'', ``$||$'', ``,'' \\
326 not & ``!'' \\
327 \hline
328 \end{tabular}
329 \end{center}
330
331 \subsection{\label{appendixSection:name}Name expressions}
332
333 \begin{center}
334 \begin{tabular}{|llp{2in}|}
335 \hline {\bf type of expression} & {\bf examples} & {\bf translation
336 of
337 examples} \\
338 \hline expression without ``.'' & select DMPC & select all
339 StuntDoubles
340 belonging to all DMPC molecules \\
341 & select C* & select all atoms which have atom types beginning with C
342 \\
343 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
344 only select the rigid bodies, and not the atoms belonging to them). \\
345 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
346 O\_TIP3P
347 atoms belonging to TIP3P molecules \\
348 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
349 the first
350 RigidBody in each DMPC molecule \\
351 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
352 molecule \\
353 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
354 select all atoms
355 belonging to all rigid bodies within all DMPC molecules \\
356 \hline
357 \end{tabular}
358 \end{center}
359
360 \subsection{\label{appendixSection:index}Index expressions}
361
362 \begin{center}
363 \begin{tabular}{|lp{4in}|}
364 \hline
365 {\bf examples} & {\bf translation of examples} \\
366 \hline
367 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
368 select 20 to 30 & select all of the StuntDoubles belonging to
369 molecules which have global indices between 20 (inclusive) and 30
370 (exclusive) \\
371 \hline
372 \end{tabular}
373 \end{center}
374
375 \subsection{\label{appendixSection:predefined}Predefined sets}
376
377 \begin{center}
378 \begin{tabular}{|ll|}
379 \hline
380 {\bf keyword} & {\bf description} \\
381 \hline
382 all & select all StuntDoubles \\
383 none & select none of the StuntDoubles \\
384 \hline
385 \end{tabular}
386 \end{center}
387
388 \subsection{\label{appendixSection:userdefined}User-defined expressions}
389
390 Users can define arbitrary terms to represent groups of
391 StuntDoubles, and then use the define terms in select commands. The
392 general form for the define command is: {\bf define {\it term
393 expression}}. Once defined, the user can specify such terms in
394 boolean expressions
395
396 {\tt define SSDWATER SSD or SSD1 or SSDRF}
397
398 {\tt select SSDWATER}
399
400 \subsection{\label{appendixSection:comparison}Comparison expressions}
401
402 StuntDoubles can be selected by using comparision operators on their
403 properties. The general form for the comparison command is: a
404 property name, followed by a comparision operator and then a number.
405
406 \begin{center}
407 \begin{tabular}{|l|l|}
408 \hline
409 {\bf property} & mass, charge \\
410 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
411 ``$<=$'', ``$!=$'' \\
412 \hline
413 \end{tabular}
414 \end{center}
415
416 For example, the phrase {\tt select mass > 16.0 and charge < -2}
417 would select StuntDoubles which have mass greater than 16.0 and
418 charges less than -2.
419
420 \subsection{\label{appendixSection:within}Within expressions}
421
422 The ``within'' keyword allows the user to select all StuntDoubles
423 within the specified distance (in Angstroms) from a selection,
424 including the selected atom itself. The general form for within
425 selection is: {\tt select within(distance, expression)}
426
427 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
428 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
429 atoms.
430
431
432 \section{\label{appendixSection:analysisFramework}Analysis Framework}
433
434 \subsection{\label{appendixSection:StaticProps}StaticProps}
435
436 {\tt StaticProps} can compute properties which are averaged over
437 some or all of the configurations that are contained within a dump
438 file. The most common example of a static property that can be
439 computed is the pair distribution function between atoms of type $A$
440 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
441 also be used to compute the density distributions of other molecules
442 in a reference frame {\it fixed to the body-fixed reference frame}
443 of a selected atom or rigid body.
444
445 There are five seperate radial distribution functions availiable in
446 OOPSE. Since every radial distrbution function invlove the
447 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
448 -{}-sele2} must be specified to tell StaticProps which bodies to
449 include in the calculation.
450
451 \begin{description}
452 \item[{\tt -{}-gofr}] Computes the pair distribution function,
453 \begin{equation*}
454 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
455 \sum_{j \in B} \delta(r - r_{ij}) \rangle
456 \end{equation*}
457 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
458 function. The angle is defined by the intermolecular vector
459 $\vec{r}$ and $z$-axis of DirectionalAtom A,
460 \begin{equation*}
461 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
462 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
463 \theta_{ij} - \cos \theta)\rangle
464 \end{equation*}
465 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
466 function. The angle is defined by the $z$-axes of the two
467 DirectionalAtoms A and B.
468 \begin{equation*}
469 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
470 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
471 \omega_{ij} - \cos \omega)\rangle
472 \end{equation*}
473 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
474 space $\theta, \omega$ defined by the two angles mentioned above.
475 \begin{equation*}
476 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
477 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
478 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
479 \omega)\rangle
480 \end{equation*}
481 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
482 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
483 and {\tt -{}-refsele} must be given to define A's internal
484 coordinate set as the reference frame for the calculation.
485 \end{description}
486
487 The vectors (and angles) associated with these angular pair
488 distribution functions are most easily seen in the figure below:
489
490 \begin{figure}
491 \centering
492 \includegraphics[width=3in]{definition.eps}
493 \caption[Definitions of the angles between directional objects]{ \\
494 Any two directional objects (DirectionalAtoms and RigidBodies) have
495 a set of two angles ($\theta$, and $\omega$) between the z-axes of
496 their body-fixed frames.} \label{oopseFig:gofr}
497 \end{figure}
498
499 Due to the fact that the selected StuntDoubles from two selections
500 may be overlapped, {\tt StaticProps} performs the calculation in
501 three stages which are illustrated in
502 Fig.~\ref{oopseFig:staticPropsProcess}.
503
504 \begin{figure}
505 \centering
506 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
507 \caption[A representation of the three-stage correlations in
508 \texttt{StaticProps}]{This diagram illustrates three-stage
509 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
510 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
511 -{}-sele2} respectively, while $C$ is the number of stuntdobules
512 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
513 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
514 the contrary, the third stage($C$ and $C$) are completely
515 overlapping} \label{oopseFig:staticPropsProcess}
516 \end{figure}
517
518 The options available for {\tt StaticProps} are as follows:
519 \begin{longtable}[c]{|EFG|}
520 \caption{StaticProps Command-line Options}
521 \\ \hline
522 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
523 \endhead
524 \hline
525 \endfoot
526 -h& {\tt -{}-help} & Print help and exit \\
527 -V& {\tt -{}-version} & Print version and exit \\
528 -i& {\tt -{}-input} & input dump file \\
529 -o& {\tt -{}-output} & output file name \\
530 -n& {\tt -{}-step} & process every n frame (default=`1') \\
531 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
532 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
533 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
534 & {\tt -{}-sele1} & select the first StuntDouble set \\
535 & {\tt -{}-sele2} & select the second StuntDouble set \\
536 & {\tt -{}-sele3} & select the third StuntDouble set \\
537 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
538 & {\tt -{}-molname} & molecule name \\
539 & {\tt -{}-begin} & begin internal index \\
540 & {\tt -{}-end} & end internal index \\
541 \hline
542 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
543 \hline
544 & {\tt -{}-gofr} & $g(r)$ \\
545 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
546 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
547 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
548 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
549 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
550 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
551 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
552 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
553 \end{longtable}
554
555 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
556
557 {\tt DynamicProps} computes time correlation functions from the
558 configurations stored in a dump file. Typical examples of time
559 correlation functions are the mean square displacement and the
560 velocity autocorrelation functions. Once again, the selection
561 syntax can be used to specify the StuntDoubles that will be used for
562 the calculation. A general time correlation function can be thought
563 of as:
564 \begin{equation}
565 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
566 \end{equation}
567 where $\vec{u}_A(t)$ is a vector property associated with an atom of
568 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
569 vector property associated with an atom of type $B$ at a different
570 time $t^{\prime}$. In most autocorrelation functions, the vector
571 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
572 $B$) are identical, and the three calculations built in to {\tt
573 DynamicProps} make these assumptions. It is possible, however, to
574 make simple modifications to the {\tt DynamicProps} code to allow
575 the use of {\it cross} time correlation functions (i.e. with
576 different vectors). The ability to use two selection scripts to
577 select different types of atoms is already present in the code.
578
579 For large simulations, the trajectory files can sometimes reach
580 sizes in excess of several gigabytes. In order to effectively
581 analyze that amount of data. In order to prevent a situation where
582 the program runs out of memory due to large trajectories,
583 \texttt{dynamicProps} will estimate the size of free memory at
584 first, and determine the number of frames in each block, which
585 allows the operating system to load two blocks of data
586 simultaneously without swapping. Upon reading two blocks of the
587 trajectory, \texttt{dynamicProps} will calculate the time
588 correlation within the first block and the cross correlations
589 between the two blocks. This second block is then freed and then
590 incremented and the process repeated until the end of the
591 trajectory. Once the end is reached, the first block is freed then
592 incremented, until all frame pairs have been correlated in time.
593 This process is illustrated in
594 Fig.~\ref{oopseFig:dynamicPropsProcess}.
595
596 \begin{figure}
597 \centering
598 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
599 \caption[A representation of the block correlations in
600 \texttt{dynamicProps}]{This diagram illustrates block correlations
601 processing in \texttt{dynamicProps}. The shaded region represents
602 the self correlation of the block, and the open blocks are read one
603 at a time and the cross correlations between blocks are calculated.}
604 \label{oopseFig:dynamicPropsProcess}
605 \end{figure}
606
607 The options available for DynamicProps are as follows:
608 \begin{longtable}[c]{|EFG|}
609 \caption{DynamicProps Command-line Options}
610 \\ \hline
611 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
612 \endhead
613 \hline
614 \endfoot
615 -h& {\tt -{}-help} & Print help and exit \\
616 -V& {\tt -{}-version} & Print version and exit \\
617 -i& {\tt -{}-input} & input dump file \\
618 -o& {\tt -{}-output} & output file name \\
619 & {\tt -{}-sele1} & select first StuntDouble set \\
620 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
621 \hline
622 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
623 \hline
624 -r& {\tt -{}-rcorr} & compute mean square displacement \\
625 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
626 -d& {\tt -{}-dcorr} & compute dipole correlation function
627 \end{longtable}
628
629 \section{\label{appendixSection:tools}Other Useful Utilities}
630
631 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
632
633 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
634 which can be opened by other molecular dynamics viewers such as Jmol
635 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
636 as follows:
637
638
639 \begin{longtable}[c]{|EFG|}
640 \caption{Dump2XYZ Command-line Options}
641 \\ \hline
642 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
643 \endhead
644 \hline
645 \endfoot
646 -h & {\tt -{}-help} & Print help and exit \\
647 -V & {\tt -{}-version} & Print version and exit \\
648 -i & {\tt -{}-input} & input dump file \\
649 -o & {\tt -{}-output} & output file name \\
650 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
651 -w & {\tt -{}-water} & skip the the waters (default=off) \\
652 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
653 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
654 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
655 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
656 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
657 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
658 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
659 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
660 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
661 converted. \\
662 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
663 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
664 \end{longtable}
665
666 \subsection{\label{appendixSection:hydrodynamics}Hydro}
667
668 {\tt Hydro} can calculate resistance and diffusion tensors at the
669 center of resistance. Both tensors at the center of diffusion can
670 also be reported from the program, as well as the coordinates for
671 the beads which are used to approximate the arbitrary shapes. The
672 options available for Hydro are as follows:
673 \begin{longtable}[c]{|EFG|}
674 \caption{Hydrodynamics Command-line Options}
675 \\ \hline
676 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
677 \endhead
678 \hline
679 \endfoot
680 -h & {\tt -{}-help} & Print help and exit \\
681 -V & {\tt -{}-version} & Print version and exit \\
682 -i & {\tt -{}-input} & input dump file \\
683 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
684 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
685 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
686 \end{longtable}