ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2826
Committed: Thu Jun 8 19:54:33 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31482 byte(s)
Log Message:
minor format change

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern not only provides a mechanism to restrict
122 instantiation of a class to one object, but also provides a global
123 point of access to the object. Currently implemented as a global
124 variable, the logging utility which reports error and warning
125 messages to the console in {\sc OOPSE} is a good candidate for
126 applying the Singleton pattern to avoid the global namespace
127 pollution.Although the singleton pattern can be implemented in
128 various ways to account for different aspects of the software
129 designs, such as lifespan control \textit{etc}, we only use the
130 static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 is declared as
132 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133
134 class IntegratorFactory {
135 public:
136 static IntegratorFactory* getInstance();
137 protected:
138 IntegratorFactory();
139 private:
140 static IntegratorFactory* instance_;
141 };
142
143 \end{lstlisting}
144 The corresponding implementation is
145 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
146
147 IntegratorFactory::instance_ = NULL;
148
149 IntegratorFactory* getInstance() {
150 if (instance_ == NULL){
151 instance_ = new IntegratorFactory;
152 }
153 return instance_;
154 }
155
156 \end{lstlisting}
157 Since constructor is declared as {\tt protected}, a client can not
158 instantiate {\tt IntegratorFactory} directly. Moreover, since the
159 member function {\tt getInstance} serves as the only entry of access
160 to {\tt IntegratorFactory}, this approach fulfills the basic
161 requirement, a single instance. Another consequence of this approach
162 is the automatic destruction since static data are destroyed upon
163 program termination.
164
165 \subsection{\label{appendixSection:factoryMethod}Factory Method}
166
167 Categoried as a creational pattern, the Factory Method pattern deals
168 with the problem of creating objects without specifying the exact
169 class of object that will be created. Factory Method is typically
170 implemented by delegating the creation operation to the subclasses.
171
172 Registers a creator with a type identifier. Looks up the type
173 identifier in the internal map. If it is found, it invokes the
174 corresponding creator for the type identifier and returns its
175 result.
176 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
177
178 class IntegratorFactory {
179 public:
180 typedef std::map<string, IntegratorCreator*> CreatorMapType;
181
182 bool registerIntegrator(IntegratorCreator* creator);
183
184 Integrator* createIntegrator(const string& id, SimInfo* info);
185
186 private:
187 CreatorMapType creatorMap_;
188 };
189
190 \end{lstlisting}
191
192 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
193
194 bool IntegratorFactory::unregisterIntegrator(const string& id) {
195 return creatorMap_.erase(id) == 1;
196 }
197
198 Integrator* IntegratorFactory::createIntegrator(const string& id,
199 SimInfo* info) {
200 CreatorMapType::iterator i = creatorMap_.find(id);
201 if (i != creatorMap_.end()) {
202 return (i->second)->create(info);
203 } else {
204 return NULL;
205 }
206 }
207
208 \end{lstlisting}
209
210 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
211
212 class IntegratorCreator {
213 public:
214 IntegratorCreator(const string& ident) : ident_(ident) {}
215
216 const string& getIdent() const { return ident_; }
217
218 virtual Integrator* create(SimInfo* info) const = 0;
219
220 private:
221 string ident_;
222 };
223
224 template<class ConcreteIntegrator>
225 class IntegratorBuilder : public IntegratorCreator {
226 public:
227 IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
228 virtual Integrator* create(SimInfo* info) const {
229 return new ConcreteIntegrator(info);
230 }
231 };
232 \end{lstlisting}
233
234 \subsection{\label{appendixSection:visitorPattern}Visitor}
235
236 The purpose of the Visitor Pattern is to encapsulate an operation
237 that you want to perform on the elements. The operation being
238 performed on a structure can be switched without changing the
239 interfaces of the elements. In other words, one can add virtual
240 functions into a set of classes without modifying their interfaces.
241 The UML class diagram of Visitor patten is shown in
242 Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
243 Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
244 extensively.
245
246 \begin{figure}
247 \centering
248 \includegraphics[width=\linewidth]{visitor.eps}
249 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
250 of {\sc OOPSE}} \label{appendixFig:visitorUML}
251 \end{figure}
252
253 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
254
255 class BaseVisitor{
256 public:
257 virtual void visit(Atom* atom);
258 virtual void visit(DirectionalAtom* datom);
259 virtual void visit(RigidBody* rb);
260 };
261
262 \end{lstlisting}
263
264 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
265
266 class StuntDouble {
267 public:
268 virtual void accept(BaseVisitor* v) = 0;
269 };
270
271 class Atom: public StuntDouble {
272 public:
273 virtual void accept{BaseVisitor* v*} {
274 v->visit(this);
275 }
276 };
277
278 class DirectionalAtom: public Atom {
279 public:
280 virtual void accept{BaseVisitor* v*} {
281 v->visit(this);
282 }
283 };
284
285 class RigidBody: public StuntDouble {
286 public:
287 virtual void accept{BaseVisitor* v*} {
288 v->visit(this);
289 }
290 };
291
292 \end{lstlisting}
293 \section{\label{appendixSection:concepts}Concepts}
294
295 OOPSE manipulates both traditional atoms as well as some objects
296 that {\it behave like atoms}. These objects can be rigid
297 collections of atoms or atoms which have orientational degrees of
298 freedom. Here is a diagram of the class heirarchy:
299
300 \begin{figure}
301 \centering
302 \includegraphics[width=3in]{heirarchy.eps}
303 \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
304 The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
305 selection syntax allows the user to select any of the objects that
306 are descended from a StuntDouble.} \label{oopseFig:heirarchy}
307 \end{figure}
308
309 \begin{itemize}
310 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
311 integrators and minimizers.
312 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
313 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
314 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
315 DirectionalAtom}s which behaves as a single unit.
316 \end{itemize}
317
318 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
319 own names which are specified in the {\tt .md} file. In contrast,
320 RigidBodies are denoted by their membership and index inside a
321 particular molecule: [MoleculeName]\_RB\_[index] (the contents
322 inside the brackets depend on the specifics of the simulation). The
323 names of rigid bodies are generated automatically. For example, the
324 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
325
326 \section{\label{appendixSection:syntax}Syntax of the Select Command}
327
328 The most general form of the select command is: {\tt select {\it
329 expression}}. This expression represents an arbitrary set of
330 StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
331 composed of either name expressions, index expressions, predefined
332 sets, user-defined expressions, comparison operators, within
333 expressions, or logical combinations of the above expression types.
334 Expressions can be combined using parentheses and the Boolean
335 operators.
336
337 \subsection{\label{appendixSection:logical}Logical expressions}
338
339 The logical operators allow complex queries to be constructed out of
340 simpler ones using the standard boolean connectives {\bf and}, {\bf
341 or}, {\bf not}. Parentheses can be used to alter the precedence of
342 the operators.
343
344 \begin{center}
345 \begin{tabular}{|ll|}
346 \hline
347 {\bf logical operator} & {\bf equivalent operator} \\
348 \hline
349 and & ``\&'', ``\&\&'' \\
350 or & ``$|$'', ``$||$'', ``,'' \\
351 not & ``!'' \\
352 \hline
353 \end{tabular}
354 \end{center}
355
356 \subsection{\label{appendixSection:name}Name expressions}
357
358 \begin{center}
359 \begin{tabular}{|llp{2in}|}
360 \hline {\bf type of expression} & {\bf examples} & {\bf translation
361 of
362 examples} \\
363 \hline expression without ``.'' & select DMPC & select all
364 StuntDoubles
365 belonging to all DMPC molecules \\
366 & select C* & select all atoms which have atom types beginning with C
367 \\
368 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
369 only select the rigid bodies, and not the atoms belonging to them). \\
370 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
371 O\_TIP3P
372 atoms belonging to TIP3P molecules \\
373 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
374 the first
375 RigidBody in each DMPC molecule \\
376 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
377 molecule \\
378 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
379 select all atoms
380 belonging to all rigid bodies within all DMPC molecules \\
381 \hline
382 \end{tabular}
383 \end{center}
384
385 \subsection{\label{appendixSection:index}Index expressions}
386
387 \begin{center}
388 \begin{tabular}{|lp{4in}|}
389 \hline
390 {\bf examples} & {\bf translation of examples} \\
391 \hline
392 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
393 select 20 to 30 & select all of the StuntDoubles belonging to
394 molecules which have global indices between 20 (inclusive) and 30
395 (exclusive) \\
396 \hline
397 \end{tabular}
398 \end{center}
399
400 \subsection{\label{appendixSection:predefined}Predefined sets}
401
402 \begin{center}
403 \begin{tabular}{|ll|}
404 \hline
405 {\bf keyword} & {\bf description} \\
406 \hline
407 all & select all StuntDoubles \\
408 none & select none of the StuntDoubles \\
409 \hline
410 \end{tabular}
411 \end{center}
412
413 \subsection{\label{appendixSection:userdefined}User-defined expressions}
414
415 Users can define arbitrary terms to represent groups of
416 StuntDoubles, and then use the define terms in select commands. The
417 general form for the define command is: {\bf define {\it term
418 expression}}. Once defined, the user can specify such terms in
419 boolean expressions
420
421 {\tt define SSDWATER SSD or SSD1 or SSDRF}
422
423 {\tt select SSDWATER}
424
425 \subsection{\label{appendixSection:comparison}Comparison expressions}
426
427 StuntDoubles can be selected by using comparision operators on their
428 properties. The general form for the comparison command is: a
429 property name, followed by a comparision operator and then a number.
430
431 \begin{center}
432 \begin{tabular}{|l|l|}
433 \hline
434 {\bf property} & mass, charge \\
435 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
436 ``$<=$'', ``$!=$'' \\
437 \hline
438 \end{tabular}
439 \end{center}
440
441 For example, the phrase {\tt select mass > 16.0 and charge < -2}
442 would select StuntDoubles which have mass greater than 16.0 and
443 charges less than -2.
444
445 \subsection{\label{appendixSection:within}Within expressions}
446
447 The ``within'' keyword allows the user to select all StuntDoubles
448 within the specified distance (in Angstroms) from a selection,
449 including the selected atom itself. The general form for within
450 selection is: {\tt select within(distance, expression)}
451
452 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
453 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
454 atoms.
455
456
457 \section{\label{appendixSection:analysisFramework}Analysis Framework}
458
459 \subsection{\label{appendixSection:StaticProps}StaticProps}
460
461 {\tt StaticProps} can compute properties which are averaged over
462 some or all of the configurations that are contained within a dump
463 file. The most common example of a static property that can be
464 computed is the pair distribution function between atoms of type $A$
465 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
466 also be used to compute the density distributions of other molecules
467 in a reference frame {\it fixed to the body-fixed reference frame}
468 of a selected atom or rigid body.
469
470 There are five seperate radial distribution functions availiable in
471 OOPSE. Since every radial distrbution function invlove the
472 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
473 -{}-sele2} must be specified to tell StaticProps which bodies to
474 include in the calculation.
475
476 \begin{description}
477 \item[{\tt -{}-gofr}] Computes the pair distribution function,
478 \begin{equation*}
479 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
480 \sum_{j \in B} \delta(r - r_{ij}) \rangle
481 \end{equation*}
482 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
483 function. The angle is defined by the intermolecular vector
484 $\vec{r}$ and $z$-axis of DirectionalAtom A,
485 \begin{equation*}
486 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
487 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
488 \theta_{ij} - \cos \theta)\rangle
489 \end{equation*}
490 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
491 function. The angle is defined by the $z$-axes of the two
492 DirectionalAtoms A and B.
493 \begin{equation*}
494 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
495 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
496 \omega_{ij} - \cos \omega)\rangle
497 \end{equation*}
498 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
499 space $\theta, \omega$ defined by the two angles mentioned above.
500 \begin{equation*}
501 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
502 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
503 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
504 \omega)\rangle
505 \end{equation*}
506 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
507 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
508 and {\tt -{}-refsele} must be given to define A's internal
509 coordinate set as the reference frame for the calculation.
510 \end{description}
511
512 The vectors (and angles) associated with these angular pair
513 distribution functions are most easily seen in the figure below:
514
515 \begin{figure}
516 \centering
517 \includegraphics[width=3in]{definition.eps}
518 \caption[Definitions of the angles between directional objects]{ \\
519 Any two directional objects (DirectionalAtoms and RigidBodies) have
520 a set of two angles ($\theta$, and $\omega$) between the z-axes of
521 their body-fixed frames.} \label{oopseFig:gofr}
522 \end{figure}
523
524 Due to the fact that the selected StuntDoubles from two selections
525 may be overlapped, {\tt StaticProps} performs the calculation in
526 three stages which are illustrated in
527 Fig.~\ref{oopseFig:staticPropsProcess}.
528
529 \begin{figure}
530 \centering
531 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
532 \caption[A representation of the three-stage correlations in
533 \texttt{StaticProps}]{This diagram illustrates three-stage
534 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
535 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
536 -{}-sele2} respectively, while $C$ is the number of stuntdobules
537 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
538 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
539 the contrary, the third stage($C$ and $C$) are completely
540 overlapping} \label{oopseFig:staticPropsProcess}
541 \end{figure}
542
543 The options available for {\tt StaticProps} are as follows:
544 \begin{longtable}[c]{|EFG|}
545 \caption{StaticProps Command-line Options}
546 \\ \hline
547 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
548 \endhead
549 \hline
550 \endfoot
551 -h& {\tt -{}-help} & Print help and exit \\
552 -V& {\tt -{}-version} & Print version and exit \\
553 -i& {\tt -{}-input} & input dump file \\
554 -o& {\tt -{}-output} & output file name \\
555 -n& {\tt -{}-step} & process every n frame (default=`1') \\
556 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
557 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
558 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
559 & {\tt -{}-sele1} & select the first StuntDouble set \\
560 & {\tt -{}-sele2} & select the second StuntDouble set \\
561 & {\tt -{}-sele3} & select the third StuntDouble set \\
562 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
563 & {\tt -{}-molname} & molecule name \\
564 & {\tt -{}-begin} & begin internal index \\
565 & {\tt -{}-end} & end internal index \\
566 \hline
567 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
568 \hline
569 & {\tt -{}-gofr} & $g(r)$ \\
570 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
571 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
572 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
573 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
574 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
575 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
576 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
577 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
578 \end{longtable}
579
580 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
581
582 {\tt DynamicProps} computes time correlation functions from the
583 configurations stored in a dump file. Typical examples of time
584 correlation functions are the mean square displacement and the
585 velocity autocorrelation functions. Once again, the selection
586 syntax can be used to specify the StuntDoubles that will be used for
587 the calculation. A general time correlation function can be thought
588 of as:
589 \begin{equation}
590 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
591 \end{equation}
592 where $\vec{u}_A(t)$ is a vector property associated with an atom of
593 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
594 vector property associated with an atom of type $B$ at a different
595 time $t^{\prime}$. In most autocorrelation functions, the vector
596 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
597 $B$) are identical, and the three calculations built in to {\tt
598 DynamicProps} make these assumptions. It is possible, however, to
599 make simple modifications to the {\tt DynamicProps} code to allow
600 the use of {\it cross} time correlation functions (i.e. with
601 different vectors). The ability to use two selection scripts to
602 select different types of atoms is already present in the code.
603
604 For large simulations, the trajectory files can sometimes reach
605 sizes in excess of several gigabytes. In order to effectively
606 analyze that amount of data. In order to prevent a situation where
607 the program runs out of memory due to large trajectories,
608 \texttt{dynamicProps} will estimate the size of free memory at
609 first, and determine the number of frames in each block, which
610 allows the operating system to load two blocks of data
611 simultaneously without swapping. Upon reading two blocks of the
612 trajectory, \texttt{dynamicProps} will calculate the time
613 correlation within the first block and the cross correlations
614 between the two blocks. This second block is then freed and then
615 incremented and the process repeated until the end of the
616 trajectory. Once the end is reached, the first block is freed then
617 incremented, until all frame pairs have been correlated in time.
618 This process is illustrated in
619 Fig.~\ref{oopseFig:dynamicPropsProcess}.
620
621 \begin{figure}
622 \centering
623 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
624 \caption[A representation of the block correlations in
625 \texttt{dynamicProps}]{This diagram illustrates block correlations
626 processing in \texttt{dynamicProps}. The shaded region represents
627 the self correlation of the block, and the open blocks are read one
628 at a time and the cross correlations between blocks are calculated.}
629 \label{oopseFig:dynamicPropsProcess}
630 \end{figure}
631
632 The options available for DynamicProps are as follows:
633 \begin{longtable}[c]{|EFG|}
634 \caption{DynamicProps Command-line Options}
635 \\ \hline
636 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
637 \endhead
638 \hline
639 \endfoot
640 -h& {\tt -{}-help} & Print help and exit \\
641 -V& {\tt -{}-version} & Print version and exit \\
642 -i& {\tt -{}-input} & input dump file \\
643 -o& {\tt -{}-output} & output file name \\
644 & {\tt -{}-sele1} & select first StuntDouble set \\
645 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
646 \hline
647 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
648 \hline
649 -r& {\tt -{}-rcorr} & compute mean square displacement \\
650 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
651 -d& {\tt -{}-dcorr} & compute dipole correlation function
652 \end{longtable}
653
654 \section{\label{appendixSection:tools}Other Useful Utilities}
655
656 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
657
658 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
659 which can be opened by other molecular dynamics viewers such as Jmol
660 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
661 as follows:
662
663
664 \begin{longtable}[c]{|EFG|}
665 \caption{Dump2XYZ Command-line Options}
666 \\ \hline
667 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
668 \endhead
669 \hline
670 \endfoot
671 -h & {\tt -{}-help} & Print help and exit \\
672 -V & {\tt -{}-version} & Print version and exit \\
673 -i & {\tt -{}-input} & input dump file \\
674 -o & {\tt -{}-output} & output file name \\
675 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
676 -w & {\tt -{}-water} & skip the the waters (default=off) \\
677 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
678 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
679 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
680 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
681 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
682 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
683 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
684 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
685 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
686 converted. \\
687 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
688 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
689 \end{longtable}
690
691 \subsection{\label{appendixSection:hydrodynamics}Hydro}
692
693 {\tt Hydro} can calculate resistance and diffusion tensors at the
694 center of resistance. Both tensors at the center of diffusion can
695 also be reported from the program, as well as the coordinates for
696 the beads which are used to approximate the arbitrary shapes. The
697 options available for Hydro are as follows:
698 \begin{longtable}[c]{|EFG|}
699 \caption{Hydrodynamics Command-line Options}
700 \\ \hline
701 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
702 \endhead
703 \hline
704 \endfoot
705 -h & {\tt -{}-help} & Print help and exit \\
706 -V & {\tt -{}-version} & Print version and exit \\
707 -i & {\tt -{}-input} & input dump file \\
708 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
709 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
710 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
711 \end{longtable}