ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2829 by tim, Thu Jun 8 20:24:39 2006 UTC vs.
Revision 2838 by tim, Fri Jun 9 02:29:06 2006 UTC

# Line 118 | Line 118 | The Singleton pattern not only provides a mechanism to
118   OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121 +
122   The Singleton pattern not only provides a mechanism to restrict
123   instantiation of a class to one object, but also provides a global
124   point of access to the object. Currently implemented as a global
# Line 127 | Line 128 | static data approach in {\sc OOPSE}. {\tt IntegratorFa
128   pollution.Although the singleton pattern can be implemented in
129   various ways  to account for different aspects of the software
130   designs, such as lifespan control \textit{etc}, we only use the
131 < static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
132 < is declared as
132 < \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
131 > static data approach in {\sc OOPSE}. IntegratorFactory class is
132 > declared as
133  
134 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135 +
136   class IntegratorFactory {
137 <  public:
138 <    static IntegratorFactory* getInstance();
139 <    protected:
140 <      IntegratorFactory();
141 <    private:
142 <      static IntegratorFactory* instance_;
137 > public:
138 >  static IntegratorFactory*
139 >  getInstance();
140 > protected:
141 >  IntegratorFactory();
142 > private:
143 >  static IntegratorFactory* instance_;
144   };
145  
146   \end{lstlisting}
147 +
148   The corresponding implementation is
145 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
149  
150 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151 +
152   IntegratorFactory::instance_ = NULL;
153  
154   IntegratorFactory* getInstance() {
# Line 154 | Line 159 | Since constructor is declared as {\tt protected}, a cl
159   }
160  
161   \end{lstlisting}
157 Since constructor is declared as {\tt protected}, a client can not
158 instantiate {\tt IntegratorFactory} directly. Moreover, since the
159 member function {\tt getInstance} serves as the only entry of access
160 to {\tt IntegratorFactory}, this approach fulfills the basic
161 requirement, a single instance. Another consequence of this approach
162 is the automatic destruction since static data are destroyed upon
163 program termination.
162  
163 + Since constructor is declared as protected, a client can not
164 + instantiate IntegratorFactory directly. Moreover, since the member
165 + function getInstance serves as the only entry of access to
166 + IntegratorFactory, this approach fulfills the basic requirement, a
167 + single instance. Another consequence of this approach is the
168 + automatic destruction since static data are destroyed upon program
169 + termination.
170 +
171   \subsection{\label{appendixSection:factoryMethod}Factory Method}
172  
173   Categoried as a creational pattern, the Factory Method pattern deals
174   with the problem of creating objects without specifying the exact
175   class of object that will be created. Factory Method is typically
176   implemented by delegating the creation operation to the subclasses.
177 + Parameterized Factory pattern where factory method (
178 + createIntegrator member function) creates products based on the
179 + identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180 + the identifier has been already registered, the factory method will
181 + invoke the corresponding creator (see List.~\ref{integratorCreator})
182 + which utilizes the modern C++ template technique to avoid excess
183 + subclassing.
184  
185 < Registers a creator with a type identifier. Looks up the type
173 < identifier in the internal map. If it is found, it invokes the
174 < corresponding creator for the type identifier and returns its
175 < result.
176 < \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
185 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186  
187   class IntegratorFactory {
188 <  public:
189 <    typedef std::map<string, IntegratorCreator*> CreatorMapType;
188 > public:
189 >  typedef std::map<string, IntegratorCreator*> CreatorMapType;
190  
191 <    bool registerIntegrator(IntegratorCreator* creator);
191 >  bool registerIntegrator(IntegratorCreator* creator) {
192 >    return creatorMap_.insert(creator->getIdent(), creator).second;
193 >  }
194  
195 <    Integrator* createIntegrator(const string& id, SimInfo* info);
195 >  Integrator* createIntegrator(const string& id, SimInfo* info) {
196 >    Integrator* result = NULL;
197 >    CreatorMapType::iterator i = creatorMap_.find(id);
198 >    if (i != creatorMap_.end()) {
199 >      result = (i->second)->create(info);
200 >    }
201 >    return result;
202 >  }
203  
204 <  private:
205 <    CreatorMapType creatorMap_;
204 > private:
205 >  CreatorMapType creatorMap_;
206   };
189
207   \end{lstlisting}
208  
209 < \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
209 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210  
194 bool IntegratorFactory::unregisterIntegrator(const string& id) {
195  return creatorMap_.erase(id) == 1;
196 }
197
198 Integrator* IntegratorFactory::createIntegrator(const string& id,
199                                                SimInfo* info) {
200  CreatorMapType::iterator i = creatorMap_.find(id);
201  if (i != creatorMap_.end()) {
202    return (i->second)->create(info);
203  } else {
204    return NULL;
205  }
206 }
207
208 \end{lstlisting}
209
210 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
211
211   class IntegratorCreator {
212 <  public:
212 > public:
213      IntegratorCreator(const string& ident) : ident_(ident) {}
214  
215      const string& getIdent() const { return ident_; }
216  
217      virtual Integrator* create(SimInfo* info) const = 0;
218  
219 <  private:
219 > private:
220      string ident_;
221   };
222  
223   template<class ConcreteIntegrator>
224   class IntegratorBuilder : public IntegratorCreator {
225 <  public:
226 <    IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
227 <    virtual  Integrator* create(SimInfo* info) const {
228 <      return new ConcreteIntegrator(info);
229 <    }
225 > public:
226 >  IntegratorBuilder(const string& ident)
227 >                   : IntegratorCreator(ident) {}
228 >  virtual  Integrator* create(SimInfo* info) const {
229 >    return new ConcreteIntegrator(info);
230 >  }
231   };
232   \end{lstlisting}
233  
234   \subsection{\label{appendixSection:visitorPattern}Visitor}
235  
236 < The purpose of the Visitor Pattern is to encapsulate an operation
237 < that you want to perform on the elements. The operation being
238 < performed on a structure can be switched without changing the
239 < interfaces  of the elements. In other words, one can add virtual
240 < functions into a set of classes without modifying their interfaces.
241 < The UML class diagram of Visitor patten is shown in
242 < Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
243 < Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
244 < extensively.
236 > The visitor pattern is designed to decouple the data structure and
237 > algorithms used upon them by collecting related operation from
238 > element classes into other visitor classes, which is equivalent to
239 > adding virtual functions into a set of classes without modifying
240 > their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241 > structure of Visitor pattern which is used extensively in {\tt
242 > Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243 > distinct operations are performed on different StuntDoubles (See the
244 > class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245 > in List.~\ref{appendixScheme:element}). Since the hierarchies
246 > remains stable, it is easy to define a visit operation (see
247 > List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248 > Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249 > manages a priority visitor list and handles the execution of every
250 > visitor in the priority list on different StuntDoubles.
251  
252   \begin{figure}
253   \centering
254   \includegraphics[width=\linewidth]{visitor.eps}
255 < \caption[The architecture of {\sc OOPSE}] {Overview of the structure
256 < of {\sc OOPSE}} \label{appendixFig:visitorUML}
255 > \caption[The UML class diagram of Visitor patten] {The UML class
256 > diagram of Visitor patten.} \label{appendixFig:visitorUML}
257   \end{figure}
258  
259 < \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
259 > \begin{figure}
260 > \centering
261 > \includegraphics[width=\linewidth]{hierarchy.eps}
262 > \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263 > the class hierarchy. } \label{oopseFig:hierarchy}
264 > \end{figure}
265  
266 < class BaseVisitor{
267 <  public:
268 <    virtual void visit(Atom* atom);
269 <    virtual void visit(DirectionalAtom* datom);
259 <    virtual void visit(RigidBody* rb);
266 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
267 >
268 > class StuntDouble { public:
269 >  virtual void accept(BaseVisitor* v) = 0;
270   };
271  
272 + class Atom: public StuntDouble { public:
273 +  virtual void accept{BaseVisitor* v*} {
274 +    v->visit(this);
275 +  }
276 + };
277 +
278 + class DirectionalAtom: public Atom { public:
279 +  virtual void accept{BaseVisitor* v*} {
280 +    v->visit(this);
281 +  }
282 + };
283 +
284 + class RigidBody: public StuntDouble { public:
285 +  virtual void accept{BaseVisitor* v*} {
286 +    v->visit(this);
287 +  }
288 + };
289 +
290   \end{lstlisting}
291  
292 < \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
292 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
293  
294 < class StuntDouble {
295 <  public:
296 <    virtual void accept(BaseVisitor* v) = 0;
294 > class BaseVisitor{
295 > public:
296 >  virtual void visit(Atom* atom);
297 >  virtual void visit(DirectionalAtom* datom);
298 >  virtual void visit(RigidBody* rb);
299   };
300  
301 < class Atom: public StuntDouble {
302 <  public:
303 <    virtual void accept{BaseVisitor* v*} {
304 <      v->visit(this);
275 <    }
301 > class BaseAtomVisitor:public BaseVisitor{ public:
302 >  virtual void visit(Atom* atom);
303 >  virtual void visit(DirectionalAtom* datom);
304 >  virtual void visit(RigidBody* rb);
305   };
306  
307 < class DirectionalAtom: public Atom {
308 <  public:
309 <    virtual void accept{BaseVisitor* v*} {
310 <      v->visit(this);
282 <    }
307 > class SSDAtomVisitor:public BaseAtomVisitor{ public:
308 >  virtual void visit(Atom* atom);
309 >  virtual void visit(DirectionalAtom* datom);
310 >  virtual void visit(RigidBody* rb);
311   };
312  
313 < class RigidBody: public StuntDouble {
314 <  public:
315 <    virtual void accept{BaseVisitor* v*} {
316 <      v->visit(this);
313 > class CompositeVisitor: public BaseVisitor {
314 > public:
315 >
316 >  typedef list<pair<BaseVisitor*, int> > VistorListType;
317 >  typedef VistorListType::iterator VisitorListIterator;
318 >  virtual void visit(Atom* atom) {
319 >    VisitorListIterator i;
320 >    BaseVisitor* curVisitor;
321 >    for(i = visitorList.begin();i != visitorList.end();++i) {
322 >      atom->accept(*i);
323      }
324 +  }
325 +
326 +  virtual void visit(DirectionalAtom* datom) {
327 +    VisitorListIterator i;
328 +    BaseVisitor* curVisitor;
329 +    for(i = visitorList.begin();i != visitorList.end();++i) {
330 +      atom->accept(*i);
331 +    }
332 +  }
333 +
334 +  virtual void visit(RigidBody* rb) {
335 +    VisitorListIterator i;
336 +    std::vector<Atom*> myAtoms;
337 +    std::vector<Atom*>::iterator ai;
338 +    myAtoms = rb->getAtoms();
339 +    for(i = visitorList.begin();i != visitorList.end();++i) {{
340 +      rb->accept(*i);
341 +      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
342 +        (*ai)->accept(*i);
343 +    }
344 +  }
345 +
346 +  void addVisitor(BaseVisitor* v, int priority);
347 +
348 +  protected:
349 +    VistorListType visitorList;
350   };
351  
352   \end{lstlisting}
# Line 296 | Line 356 | freedom.  A diagram of the class heirarchy is illustra
356   OOPSE manipulates both traditional atoms as well as some objects
357   that {\it behave like atoms}.  These objects can be rigid
358   collections of atoms or atoms which have orientational degrees of
359 < freedom.  A diagram of the class heirarchy is illustrated in
360 < Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
359 > freedom.  A diagram of the class hierarchy is illustrated in
360 > Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
361   DirectionalAtom in {\sc OOPSE} have their own names which are
362   specified in the {\tt .md} file. In contrast, RigidBodies are
363   denoted by their membership and index inside a particular molecule:
# Line 305 | Line 365 | body in a DMPC molecule is DMPC\_RB\_0.
365   on the specifics of the simulation). The names of rigid bodies are
366   generated automatically. For example, the name of the first rigid
367   body in a DMPC molecule is DMPC\_RB\_0.
308 \begin{figure}
309 \centering
310 \includegraphics[width=\linewidth]{heirarchy.eps}
311 \caption[Class heirarchy for StuntDoubles in {\sc OOPSE}]{ The class
312 heirarchy of StuntDoubles in {\sc OOPSE}.
368   \begin{itemize}
369   \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
370   integrators and minimizers.
# Line 318 | Line 373 | DirectionalAtom}s which behaves as a single unit.
373   \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
374   DirectionalAtom}s which behaves as a single unit.
375   \end{itemize}
321 } \label{oopseFig:heirarchy}
322 \end{figure}
376  
377   \section{\label{appendixSection:syntax}Syntax of the Select Command}
378  
379 < The most general form of the select command is: {\tt select {\it
380 < expression}}. This expression represents an arbitrary set of
381 < StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
382 < composed of either name expressions, index expressions, predefined
383 < sets, user-defined expressions, comparison operators, within
384 < expressions, or logical combinations of the above expression types.
385 < Expressions can be combined using parentheses and the Boolean
386 < operators.
379 > {\sc OOPSE} provides a powerful selection utility to select
380 > StuntDoubles. The most general form of the select command is:
381 >
382 > {\tt select {\it expression}}.
383 >
384 > This expression represents an arbitrary set of StuntDoubles (Atoms
385 > or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
386 > name expressions, index expressions, predefined sets, user-defined
387 > expressions, comparison operators, within expressions, or logical
388 > combinations of the above expression types. Expressions can be
389 > combined using parentheses and the Boolean operators.
390  
391   \subsection{\label{appendixSection:logical}Logical expressions}
392  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines