ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2816 by tim, Wed Jun 7 19:51:57 2006 UTC vs.
Revision 2837 by tim, Fri Jun 9 02:20:39 2006 UTC

# Line 118 | Line 118 | The Singleton pattern ensures that only one instance o
118   OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern ensures that only one instance of a class is
122 created. All objects that use an instance of that class use the same
123 instance.
121  
122 + The Singleton pattern not only provides a mechanism to restrict
123 + instantiation of a class to one object, but also provides a global
124 + point of access to the object. Currently implemented as a global
125 + variable, the logging utility which reports error and warning
126 + messages to the console in {\sc OOPSE} is a good candidate for
127 + applying the Singleton pattern to avoid the global namespace
128 + pollution.Although the singleton pattern can be implemented in
129 + various ways  to account for different aspects of the software
130 + designs, such as lifespan control \textit{etc}, we only use the
131 + static data approach in {\sc OOPSE}. IntegratorFactory class is
132 + declared as
133 +
134 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135 +
136 + class IntegratorFactory {
137 + public:
138 +  static IntegratorFactory*
139 +  getInstance();
140 + protected:
141 +  IntegratorFactory();
142 + private:
143 +  static IntegratorFactory* instance_;
144 + };
145 +
146 + \end{lstlisting}
147 +
148 + The corresponding implementation is
149 +
150 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151 +
152 + IntegratorFactory::instance_ = NULL;
153 +
154 + IntegratorFactory* getInstance() {
155 +  if (instance_ == NULL){
156 +    instance_ = new IntegratorFactory;
157 +  }
158 +  return instance_;
159 + }
160 +
161 + \end{lstlisting}
162 +
163 + Since constructor is declared as protected, a client can not
164 + instantiate IntegratorFactory directly. Moreover, since the member
165 + function getInstance serves as the only entry of access to
166 + IntegratorFactory, this approach fulfills the basic requirement, a
167 + single instance. Another consequence of this approach is the
168 + automatic destruction since static data are destroyed upon program
169 + termination.
170 +
171   \subsection{\label{appendixSection:factoryMethod}Factory Method}
126 The Factory Method pattern is a creational pattern which deals with
127 the problem of creating objects without specifying the exact class
128 of object that will be created. Factory Method solves this problem
129 by defining a separate method for creating the objects, which
130 subclasses can then override to specify the derived type of product
131 that will be created.
172  
173 + Categoried as a creational pattern, the Factory Method pattern deals
174 + with the problem of creating objects without specifying the exact
175 + class of object that will be created. Factory Method is typically
176 + implemented by delegating the creation operation to the subclasses.
177 + Parameterized Factory pattern where factory method (
178 + createIntegrator member function) creates products based on the
179 + identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180 + the identifier has been already registered, the factory method will
181 + invoke the corresponding creator (see List.~\ref{integratorCreator})
182 + which utilizes the modern C++ template technique to avoid excess
183 + subclassing.
184 +
185 + \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186 +
187 + class IntegratorFactory {
188 + public:
189 +  typedef std::map<string, IntegratorCreator*> CreatorMapType;
190 +
191 +  bool registerIntegrator(IntegratorCreator* creator) {
192 +    return creatorMap_.insert(creator->getIdent(), creator).second;
193 +  }
194 +
195 +  Integrator* createIntegrator(const string& id, SimInfo* info) {
196 +    Integrator* result = NULL;
197 +    CreatorMapType::iterator i = creatorMap_.find(id);
198 +    if (i != creatorMap_.end()) {
199 +      result = (i->second)->create(info);
200 +    }
201 +    return result;
202 +  }
203 +
204 + private:
205 +  CreatorMapType creatorMap_;
206 + };
207 + \end{lstlisting}
208 +
209 + \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210 +
211 + class IntegratorCreator {
212 + public:
213 +    IntegratorCreator(const string& ident) : ident_(ident) {}
214 +
215 +    const string& getIdent() const { return ident_; }
216 +
217 +    virtual Integrator* create(SimInfo* info) const = 0;
218 +
219 + private:
220 +    string ident_;
221 + };
222 +
223 + template<class ConcreteIntegrator>
224 + class IntegratorBuilder : public IntegratorCreator {
225 + public:
226 +  IntegratorBuilder(const string& ident)
227 +                   : IntegratorCreator(ident) {}
228 +  virtual  Integrator* create(SimInfo* info) const {
229 +    return new ConcreteIntegrator(info);
230 +  }
231 + };
232 + \end{lstlisting}
233 +
234   \subsection{\label{appendixSection:visitorPattern}Visitor}
134 The purpose of the Visitor Pattern is to encapsulate an operation
135 that you want to perform on the elements of a data structure. In
136 this way, you can change the operation being performed on a
137 structure without the need of changing the classes of the elements
138 that you are operating on.
235  
236 < \section{\label{appendixSection:concepts}Concepts}
236 > The visitor pattern is designed to decouple the data structure and
237 > algorithms used upon them by collecting related operation from
238 > element classes into other visitor classes, which is equivalent to
239 > adding virtual functions into a set of classes without modifying
240 > their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241 > structure of Visitor pattern which is used extensively in {\tt
242 > Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243 > distinct operations are performed on different StuntDoubles (See the
244 > class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245 > in List.~\ref{appendixScheme:element}). Since the hierarchies
246 > remains stable, it is easy to define a visit operation (see
247 > List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248 > Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249 > manages a priority visitor list and handles the execution of every
250 > visitor in the priority list on different StuntDoubles.
251  
252 < OOPSE manipulates both traditional atoms as well as some objects
253 < that {\it behave like atoms}.  These objects can be rigid
254 < collections of atoms or atoms which have orientational degrees of
255 < freedom.  Here is a diagram of the class heirarchy:
252 > \begin{figure}
253 > \centering
254 > \includegraphics[width=\linewidth]{visitor.eps}
255 > \caption[The UML class diagram of Visitor patten] {The UML class
256 > diagram of Visitor patten.} \label{appendixFig:visitorUML}
257 > \end{figure}
258  
259   %\begin{figure}
260   %\centering
261 < %\includegraphics[width=3in]{heirarchy.eps}
262 < %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
263 < %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
264 < %selection syntax allows the user to select any of the objects that
265 < %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
261 > %\includegraphics[width=\linewidth]{hierarchy.eps}
262 > %\caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263 > %the class hierarchy.
264 > %\begin{itemize}
265 > %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
266 > %integrators and minimizers.
267 > %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
268 > %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
269 > %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
270 > %DirectionalAtom}s which behaves as a single unit.
271 > %\end{itemize}
272 > %} \label{oopseFig:hierarchy}
273   %\end{figure}
274  
275 < \begin{itemize}
157 < \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
158 < integrators and minimizers.
159 < \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
160 < \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
161 < \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
162 < DirectionalAtom}s which behaves as a single unit.
163 < \end{itemize}
275 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
276  
277 < Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
278 < own names which are specified in the {\tt .md} file. In contrast,
279 < RigidBodies are denoted by their membership and index inside a
168 < particular molecule: [MoleculeName]\_RB\_[index] (the contents
169 < inside the brackets depend on the specifics of the simulation). The
170 < names of rigid bodies are generated automatically. For example, the
171 < name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
277 > class StuntDouble { public:
278 >  virtual void accept(BaseVisitor* v) = 0;
279 > };
280  
281 + class Atom: public StuntDouble { public:
282 +  virtual void accept{BaseVisitor* v*} {
283 +    v->visit(this);
284 +  }
285 + };
286 +
287 + class DirectionalAtom: public Atom { public:
288 +  virtual void accept{BaseVisitor* v*} {
289 +    v->visit(this);
290 +  }
291 + };
292 +
293 + class RigidBody: public StuntDouble { public:
294 +  virtual void accept{BaseVisitor* v*} {
295 +    v->visit(this);
296 +  }
297 + };
298 +
299 + \end{lstlisting}
300 +
301 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
302 +
303 + class BaseVisitor{
304 + public:
305 +  virtual void visit(Atom* atom);
306 +  virtual void visit(DirectionalAtom* datom);
307 +  virtual void visit(RigidBody* rb);
308 + };
309 +
310 + class BaseAtomVisitor:public BaseVisitor{ public:
311 +  virtual void visit(Atom* atom);
312 +  virtual void visit(DirectionalAtom* datom);
313 +  virtual void visit(RigidBody* rb);
314 + };
315 +
316 + class SSDAtomVisitor:public BaseAtomVisitor{ public:
317 +  virtual void visit(Atom* atom);
318 +  virtual void visit(DirectionalAtom* datom);
319 +  virtual void visit(RigidBody* rb);
320 + };
321 +
322 + class CompositeVisitor: public BaseVisitor {
323 + public:
324 +
325 +  typedef list<pair<BaseVisitor*, int> > VistorListType;
326 +  typedef VistorListType::iterator VisitorListIterator;
327 +  virtual void visit(Atom* atom) {
328 +    VisitorListIterator i;
329 +    BaseVisitor* curVisitor;
330 +    for(i = visitorList.begin();i != visitorList.end();++i) {
331 +      atom->accept(*i);
332 +    }
333 +  }
334 +
335 +  virtual void visit(DirectionalAtom* datom) {
336 +    VisitorListIterator i;
337 +    BaseVisitor* curVisitor;
338 +    for(i = visitorList.begin();i != visitorList.end();++i) {
339 +      atom->accept(*i);
340 +    }
341 +  }
342 +
343 +  virtual void visit(RigidBody* rb) {
344 +    VisitorListIterator i;
345 +    std::vector<Atom*> myAtoms;
346 +    std::vector<Atom*>::iterator ai;
347 +    myAtoms = rb->getAtoms();
348 +    for(i = visitorList.begin();i != visitorList.end();++i) {{
349 +      rb->accept(*i);
350 +      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
351 +        (*ai)->accept(*i);
352 +    }
353 +  }
354 +
355 +  void addVisitor(BaseVisitor* v, int priority);
356 +
357 +  protected:
358 +    VistorListType visitorList;
359 + };
360 +
361 + \end{lstlisting}
362 +
363 + \section{\label{appendixSection:concepts}Concepts}
364 +
365 + OOPSE manipulates both traditional atoms as well as some objects
366 + that {\it behave like atoms}.  These objects can be rigid
367 + collections of atoms or atoms which have orientational degrees of
368 + freedom.  A diagram of the class hierarchy is illustrated in
369 + Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
370 + DirectionalAtom in {\sc OOPSE} have their own names which are
371 + specified in the {\tt .md} file. In contrast, RigidBodies are
372 + denoted by their membership and index inside a particular molecule:
373 + [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
374 + on the specifics of the simulation). The names of rigid bodies are
375 + generated automatically. For example, the name of the first rigid
376 + body in a DMPC molecule is DMPC\_RB\_0.
377 +
378   \section{\label{appendixSection:syntax}Syntax of the Select Command}
379  
380 < The most general form of the select command is: {\tt select {\it
381 < expression}}. This expression represents an arbitrary set of
382 < StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
383 < composed of either name expressions, index expressions, predefined
384 < sets, user-defined expressions, comparison operators, within
385 < expressions, or logical combinations of the above expression types.
386 < Expressions can be combined using parentheses and the Boolean
387 < operators.
380 > {\sc OOPSE} provides a powerful selection utility to select
381 > StuntDoubles. The most general form of the select command is:
382 >
383 > {\tt select {\it expression}}.
384 >
385 > This expression represents an arbitrary set of StuntDoubles (Atoms
386 > or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
387 > name expressions, index expressions, predefined sets, user-defined
388 > expressions, comparison operators, within expressions, or logical
389 > combinations of the above expression types. Expressions can be
390 > combined using parentheses and the Boolean operators.
391  
392   \subsection{\label{appendixSection:logical}Logical expressions}
393  
# Line 502 | Line 710 | Dump2XYZ can transform an OOPSE dump file into a xyz f
710  
711   \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
712  
713 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
714 < be opened by other molecular dynamics viewers such as Jmol and
715 < VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
716 < follows:
713 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
714 > which can be opened by other molecular dynamics viewers such as Jmol
715 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
716 > as follows:
717  
718  
719   \begin{longtable}[c]{|EFG|}
# Line 536 | Line 744 | The options available for Hydro are as follows:
744   \end{longtable}
745  
746   \subsection{\label{appendixSection:hydrodynamics}Hydro}
747 < The options available for Hydro are as follows:
747 >
748 > {\tt Hydro} can calculate resistance and diffusion tensors at the
749 > center of resistance. Both tensors at the center of diffusion can
750 > also be reported from the program, as well as the coordinates for
751 > the beads which are used to approximate the arbitrary shapes. The
752 > options available for Hydro are as follows:
753   \begin{longtable}[c]{|EFG|}
754   \caption{Hydrodynamics Command-line Options}
755   \\ \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines