ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2841
Committed: Fri Jun 9 03:19:29 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 32843 byte(s)
Log Message:
more reference fixes

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Absence of applying modern software development practices is the
5 bottleneck of Scientific Computing community\cite{Wilson2006}. In
6 the last 20 years , there are quite a few MD
7 packages\cite{Brooks1983, Vincent1995, Kale1999} that were developed
8 to solve common MD problems and perform robust simulations .
9 Unfortunately, most of them are commercial programs that are either
10 poorly written or extremely complicate. Consequently, it prevents
11 the researchers to reuse or extend those packages to do cutting-edge
12 research effectively. Along the way of studying structural and
13 dynamic processes in condensed phase systems like biological
14 membranes and nanoparticles, we developed an open source
15 Object-Oriented Parallel Simulation Engine ({\sc OOPSE}). This new
16 molecular dynamics package has some unique features
17 \begin{enumerate}
18 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
19 atom types (transition metals, point dipoles, sticky potentials,
20 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
21 degrees of freedom), as well as rigid bodies.
22 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
23 Beowulf clusters to obtain very efficient parallelism.
24 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
25 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
26 ensembles.
27 \item {\sc OOPSE} can carry out simulations on metallic systems using the
28 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
29 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
30 \item {\sc OOPSE} can simulate systems containing the extremely efficient
31 extended-Soft Sticky Dipole (SSD/E) model for water.
32 \end{enumerate}
33
34 \section{\label{appendixSection:architecture }Architecture}
35
36 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
37 uses C++ Standard Template Library (STL) and fortran modules as the
38 foundation. As an extensive set of the STL and Fortran90 modules,
39 {\sc Base Classes} provide generic implementations of mathematical
40 objects (e.g., matrices, vectors, polynomials, random number
41 generators) and advanced data structures and algorithms(e.g., tuple,
42 bitset, generic data, string manipulation). The molecular data
43 structures for the representation of atoms, bonds, bends, torsions,
44 rigid bodies and molecules \textit{etc} are contained in the {\sc
45 Kernel} which is implemented with {\sc Base Classes} and are
46 carefully designed to provide maximum extensibility and flexibility.
47 The functionality required for applications is provide by the third
48 layer which contains Input/Output, Molecular Mechanics and Structure
49 modules. Input/Output module not only implements general methods for
50 file handling, but also defines a generic force field interface.
51 Another important component of Input/Output module is the meta-data
52 file parser, which is rewritten using ANother Tool for Language
53 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
54 Mechanics module consists of energy minimization and a wide
55 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
56 The structure module contains a flexible and powerful selection
57 library which syntax is elaborated in
58 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
59 program of the package, \texttt{oopse} and it corresponding parallel
60 version \texttt{oopse\_MPI}, as well as other useful utilities, such
61 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
62 \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
63 \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
64 \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
65 \textit{etc}.
66
67 \begin{figure}
68 \centering
69 \includegraphics[width=\linewidth]{architecture.eps}
70 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
71 of {\sc OOPSE}} \label{appendixFig:architecture}
72 \end{figure}
73
74 \section{\label{appendixSection:desginPattern}Design Pattern}
75
76 Design patterns are optimal solutions to commonly-occurring problems
77 in software design. Although originated as an architectural concept
78 for buildings and towns by Christopher Alexander
79 \cite{Alexander1987}, software patterns first became popular with
80 the wide acceptance of the book, Design Patterns: Elements of
81 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
82 the experience, knowledge and insights of developers who have
83 successfully used these patterns in their own work. Patterns are
84 reusable. They provide a ready-made solution that can be adapted to
85 different problems as necessary. Pattern are expressive. they
86 provide a common vocabulary of solutions that can express large
87 solutions succinctly.
88
89 Patterns are usually described using a format that includes the
90 following information:
91 \begin{enumerate}
92 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
93 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
94 in the literature. In this case it is common practice to document these nicknames or synonyms under
95 the heading of \emph{Aliases} or \emph{Also Known As}.
96 \item The \emph{motivation} or \emph{context} that this pattern applies
97 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
98 \item The \emph{solution} to the problem that the pattern
99 addresses. It describes how to construct the necessary work products. The description may include
100 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
101 collaborations, to show how the problem is solved.
102 \item The \emph{consequences} of using the given solution to solve a
103 problem, both positive and negative.
104 \end{enumerate}
105
106 As one of the latest advanced techniques emerged from
107 object-oriented community, design patterns were applied in some of
108 the modern scientific software applications, such as JMol, {\sc
109 OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2005}
110 \textit{etc}. The following sections enumerates some of the patterns
111 used in {\sc OOPSE}.
112
113 \subsection{\label{appendixSection:singleton}Singleton}
114
115 The Singleton pattern not only provides a mechanism to restrict
116 instantiation of a class to one object, but also provides a global
117 point of access to the object. Currently implemented as a global
118 variable, the logging utility which reports error and warning
119 messages to the console in {\sc OOPSE} is a good candidate for
120 applying the Singleton pattern to avoid the global namespace
121 pollution.Although the singleton pattern can be implemented in
122 various ways to account for different aspects of the software
123 designs, such as lifespan control \textit{etc}, we only use the
124 static data approach in {\sc OOPSE}. IntegratorFactory class is
125 declared as
126
127 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
128
129 class IntegratorFactory {
130 public:
131 static IntegratorFactory*
132 getInstance();
133 protected:
134 IntegratorFactory();
135 private:
136 static IntegratorFactory* instance_;
137 };
138
139 \end{lstlisting}
140
141 The corresponding implementation is
142
143 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
144
145 IntegratorFactory::instance_ = NULL;
146
147 IntegratorFactory* getInstance() {
148 if (instance_ == NULL){
149 instance_ = new IntegratorFactory;
150 }
151 return instance_;
152 }
153
154 \end{lstlisting}
155
156 Since constructor is declared as protected, a client can not
157 instantiate IntegratorFactory directly. Moreover, since the member
158 function getInstance serves as the only entry of access to
159 IntegratorFactory, this approach fulfills the basic requirement, a
160 single instance. Another consequence of this approach is the
161 automatic destruction since static data are destroyed upon program
162 termination.
163
164 \subsection{\label{appendixSection:factoryMethod}Factory Method}
165
166 Categoried as a creational pattern, the Factory Method pattern deals
167 with the problem of creating objects without specifying the exact
168 class of object that will be created. Factory Method is typically
169 implemented by delegating the creation operation to the subclasses.
170 Parameterized Factory pattern where factory method (
171 createIntegrator member function) creates products based on the
172 identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
173 the identifier has been already registered, the factory method will
174 invoke the corresponding creator (see List.~\ref{integratorCreator})
175 which utilizes the modern C++ template technique to avoid excess
176 subclassing.
177
178 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
179
180 class IntegratorFactory {
181 public:
182 typedef std::map<string, IntegratorCreator*> CreatorMapType;
183
184 bool registerIntegrator(IntegratorCreator* creator) {
185 return creatorMap_.insert(creator->getIdent(), creator).second;
186 }
187
188 Integrator* createIntegrator(const string& id, SimInfo* info) {
189 Integrator* result = NULL;
190 CreatorMapType::iterator i = creatorMap_.find(id);
191 if (i != creatorMap_.end()) {
192 result = (i->second)->create(info);
193 }
194 return result;
195 }
196
197 private:
198 CreatorMapType creatorMap_;
199 };
200 \end{lstlisting}
201
202 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
203
204 class IntegratorCreator {
205 public:
206 IntegratorCreator(const string& ident) : ident_(ident) {}
207
208 const string& getIdent() const { return ident_; }
209
210 virtual Integrator* create(SimInfo* info) const = 0;
211
212 private:
213 string ident_;
214 };
215
216 template<class ConcreteIntegrator>
217 class IntegratorBuilder : public IntegratorCreator {
218 public:
219 IntegratorBuilder(const string& ident)
220 : IntegratorCreator(ident) {}
221 virtual Integrator* create(SimInfo* info) const {
222 return new ConcreteIntegrator(info);
223 }
224 };
225 \end{lstlisting}
226
227 \subsection{\label{appendixSection:visitorPattern}Visitor}
228
229 The visitor pattern is designed to decouple the data structure and
230 algorithms used upon them by collecting related operation from
231 element classes into other visitor classes, which is equivalent to
232 adding virtual functions into a set of classes without modifying
233 their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
234 structure of Visitor pattern which is used extensively in {\tt
235 Dump2XYZ}. In order to convert an OOPSE dump file, a series of
236 distinct operations are performed on different StuntDoubles (See the
237 class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
238 in List.~\ref{appendixScheme:element}). Since the hierarchies
239 remains stable, it is easy to define a visit operation (see
240 List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
241 Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
242 manages a priority visitor list and handles the execution of every
243 visitor in the priority list on different StuntDoubles.
244
245 \begin{figure}
246 \centering
247 \includegraphics[width=\linewidth]{visitor.eps}
248 \caption[The UML class diagram of Visitor patten] {The UML class
249 diagram of Visitor patten.} \label{appendixFig:visitorUML}
250 \end{figure}
251
252 \begin{figure}
253 \centering
254 \includegraphics[width=\linewidth]{hierarchy.eps}
255 \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
256 the class hierarchy. } \label{oopseFig:hierarchy}
257 \end{figure}
258
259 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
260
261 class StuntDouble { public:
262 virtual void accept(BaseVisitor* v) = 0;
263 };
264
265 class Atom: public StuntDouble { public:
266 virtual void accept{BaseVisitor* v*} {
267 v->visit(this);
268 }
269 };
270
271 class DirectionalAtom: public Atom { public:
272 virtual void accept{BaseVisitor* v*} {
273 v->visit(this);
274 }
275 };
276
277 class RigidBody: public StuntDouble { public:
278 virtual void accept{BaseVisitor* v*} {
279 v->visit(this);
280 }
281 };
282
283 \end{lstlisting}
284
285 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
286
287 class BaseVisitor{
288 public:
289 virtual void visit(Atom* atom);
290 virtual void visit(DirectionalAtom* datom);
291 virtual void visit(RigidBody* rb);
292 };
293
294 class BaseAtomVisitor:public BaseVisitor{ public:
295 virtual void visit(Atom* atom);
296 virtual void visit(DirectionalAtom* datom);
297 virtual void visit(RigidBody* rb);
298 };
299
300 class SSDAtomVisitor:public BaseAtomVisitor{ public:
301 virtual void visit(Atom* atom);
302 virtual void visit(DirectionalAtom* datom);
303 virtual void visit(RigidBody* rb);
304 };
305
306 class CompositeVisitor: public BaseVisitor {
307 public:
308
309 typedef list<pair<BaseVisitor*, int> > VistorListType;
310 typedef VistorListType::iterator VisitorListIterator;
311 virtual void visit(Atom* atom) {
312 VisitorListIterator i;
313 BaseVisitor* curVisitor;
314 for(i = visitorList.begin();i != visitorList.end();++i) {
315 atom->accept(*i);
316 }
317 }
318
319 virtual void visit(DirectionalAtom* datom) {
320 VisitorListIterator i;
321 BaseVisitor* curVisitor;
322 for(i = visitorList.begin();i != visitorList.end();++i) {
323 atom->accept(*i);
324 }
325 }
326
327 virtual void visit(RigidBody* rb) {
328 VisitorListIterator i;
329 std::vector<Atom*> myAtoms;
330 std::vector<Atom*>::iterator ai;
331 myAtoms = rb->getAtoms();
332 for(i = visitorList.begin();i != visitorList.end();++i) {{
333 rb->accept(*i);
334 for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
335 (*ai)->accept(*i);
336 }
337 }
338
339 void addVisitor(BaseVisitor* v, int priority);
340
341 protected:
342 VistorListType visitorList;
343 };
344
345 \end{lstlisting}
346
347 \section{\label{appendixSection:concepts}Concepts}
348
349 OOPSE manipulates both traditional atoms as well as some objects
350 that {\it behave like atoms}. These objects can be rigid
351 collections of atoms or atoms which have orientational degrees of
352 freedom. A diagram of the class hierarchy is illustrated in
353 Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
354 DirectionalAtom in {\sc OOPSE} have their own names which are
355 specified in the {\tt .md} file. In contrast, RigidBodies are
356 denoted by their membership and index inside a particular molecule:
357 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
358 on the specifics of the simulation). The names of rigid bodies are
359 generated automatically. For example, the name of the first rigid
360 body in a DMPC molecule is DMPC\_RB\_0.
361 \begin{itemize}
362 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
363 integrators and minimizers.
364 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
365 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
366 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
367 DirectionalAtom}s which behaves as a single unit.
368 \end{itemize}
369
370 \section{\label{appendixSection:syntax}Syntax of the Select Command}
371
372 {\sc OOPSE} provides a powerful selection utility to select
373 StuntDoubles. The most general form of the select command is:
374
375 {\tt select {\it expression}}.
376
377 This expression represents an arbitrary set of StuntDoubles (Atoms
378 or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
379 name expressions, index expressions, predefined sets, user-defined
380 expressions, comparison operators, within expressions, or logical
381 combinations of the above expression types. Expressions can be
382 combined using parentheses and the Boolean operators.
383
384 \subsection{\label{appendixSection:logical}Logical expressions}
385
386 The logical operators allow complex queries to be constructed out of
387 simpler ones using the standard boolean connectives {\bf and}, {\bf
388 or}, {\bf not}. Parentheses can be used to alter the precedence of
389 the operators.
390
391 \begin{center}
392 \begin{tabular}{|ll|}
393 \hline
394 {\bf logical operator} & {\bf equivalent operator} \\
395 \hline
396 and & ``\&'', ``\&\&'' \\
397 or & ``$|$'', ``$||$'', ``,'' \\
398 not & ``!'' \\
399 \hline
400 \end{tabular}
401 \end{center}
402
403 \subsection{\label{appendixSection:name}Name expressions}
404
405 \begin{center}
406 \begin{tabular}{|llp{2in}|}
407 \hline {\bf type of expression} & {\bf examples} & {\bf translation
408 of
409 examples} \\
410 \hline expression without ``.'' & select DMPC & select all
411 StuntDoubles
412 belonging to all DMPC molecules \\
413 & select C* & select all atoms which have atom types beginning with C
414 \\
415 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
416 only select the rigid bodies, and not the atoms belonging to them). \\
417 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
418 O\_TIP3P
419 atoms belonging to TIP3P molecules \\
420 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
421 the first
422 RigidBody in each DMPC molecule \\
423 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
424 molecule \\
425 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
426 select all atoms
427 belonging to all rigid bodies within all DMPC molecules \\
428 \hline
429 \end{tabular}
430 \end{center}
431
432 \subsection{\label{appendixSection:index}Index expressions}
433
434 \begin{center}
435 \begin{tabular}{|lp{4in}|}
436 \hline
437 {\bf examples} & {\bf translation of examples} \\
438 \hline
439 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
440 select 20 to 30 & select all of the StuntDoubles belonging to
441 molecules which have global indices between 20 (inclusive) and 30
442 (exclusive) \\
443 \hline
444 \end{tabular}
445 \end{center}
446
447 \subsection{\label{appendixSection:predefined}Predefined sets}
448
449 \begin{center}
450 \begin{tabular}{|ll|}
451 \hline
452 {\bf keyword} & {\bf description} \\
453 \hline
454 all & select all StuntDoubles \\
455 none & select none of the StuntDoubles \\
456 \hline
457 \end{tabular}
458 \end{center}
459
460 \subsection{\label{appendixSection:userdefined}User-defined expressions}
461
462 Users can define arbitrary terms to represent groups of
463 StuntDoubles, and then use the define terms in select commands. The
464 general form for the define command is: {\bf define {\it term
465 expression}}. Once defined, the user can specify such terms in
466 boolean expressions
467
468 {\tt define SSDWATER SSD or SSD1 or SSDRF}
469
470 {\tt select SSDWATER}
471
472 \subsection{\label{appendixSection:comparison}Comparison expressions}
473
474 StuntDoubles can be selected by using comparision operators on their
475 properties. The general form for the comparison command is: a
476 property name, followed by a comparision operator and then a number.
477
478 \begin{center}
479 \begin{tabular}{|l|l|}
480 \hline
481 {\bf property} & mass, charge \\
482 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
483 ``$<=$'', ``$!=$'' \\
484 \hline
485 \end{tabular}
486 \end{center}
487
488 For example, the phrase {\tt select mass > 16.0 and charge < -2}
489 would select StuntDoubles which have mass greater than 16.0 and
490 charges less than -2.
491
492 \subsection{\label{appendixSection:within}Within expressions}
493
494 The ``within'' keyword allows the user to select all StuntDoubles
495 within the specified distance (in Angstroms) from a selection,
496 including the selected atom itself. The general form for within
497 selection is: {\tt select within(distance, expression)}
498
499 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
500 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
501 atoms.
502
503
504 \section{\label{appendixSection:analysisFramework}Analysis Framework}
505
506 \subsection{\label{appendixSection:StaticProps}StaticProps}
507
508 {\tt StaticProps} can compute properties which are averaged over
509 some or all of the configurations that are contained within a dump
510 file. The most common example of a static property that can be
511 computed is the pair distribution function between atoms of type $A$
512 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
513 also be used to compute the density distributions of other molecules
514 in a reference frame {\it fixed to the body-fixed reference frame}
515 of a selected atom or rigid body.
516
517 There are five seperate radial distribution functions availiable in
518 OOPSE. Since every radial distrbution function invlove the
519 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
520 -{}-sele2} must be specified to tell StaticProps which bodies to
521 include in the calculation.
522
523 \begin{description}
524 \item[{\tt -{}-gofr}] Computes the pair distribution function,
525 \begin{equation*}
526 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
527 \sum_{j \in B} \delta(r - r_{ij}) \rangle
528 \end{equation*}
529 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
530 function. The angle is defined by the intermolecular vector
531 $\vec{r}$ and $z$-axis of DirectionalAtom A,
532 \begin{equation*}
533 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
534 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
535 \theta_{ij} - \cos \theta)\rangle
536 \end{equation*}
537 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
538 function. The angle is defined by the $z$-axes of the two
539 DirectionalAtoms A and B.
540 \begin{equation*}
541 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
542 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
543 \omega_{ij} - \cos \omega)\rangle
544 \end{equation*}
545 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
546 space $\theta, \omega$ defined by the two angles mentioned above.
547 \begin{equation*}
548 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
549 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
550 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
551 \omega)\rangle
552 \end{equation*}
553 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
554 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
555 and {\tt -{}-refsele} must be given to define A's internal
556 coordinate set as the reference frame for the calculation.
557 \end{description}
558
559 The vectors (and angles) associated with these angular pair
560 distribution functions are most easily seen in the figure below:
561
562 \begin{figure}
563 \centering
564 \includegraphics[width=3in]{definition.eps}
565 \caption[Definitions of the angles between directional objects]{ \\
566 Any two directional objects (DirectionalAtoms and RigidBodies) have
567 a set of two angles ($\theta$, and $\omega$) between the z-axes of
568 their body-fixed frames.} \label{oopseFig:gofr}
569 \end{figure}
570
571 Due to the fact that the selected StuntDoubles from two selections
572 may be overlapped, {\tt StaticProps} performs the calculation in
573 three stages which are illustrated in
574 Fig.~\ref{oopseFig:staticPropsProcess}.
575
576 \begin{figure}
577 \centering
578 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
579 \caption[A representation of the three-stage correlations in
580 \texttt{StaticProps}]{This diagram illustrates three-stage
581 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
582 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
583 -{}-sele2} respectively, while $C$ is the number of stuntdobules
584 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
585 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
586 the contrary, the third stage($C$ and $C$) are completely
587 overlapping} \label{oopseFig:staticPropsProcess}
588 \end{figure}
589
590 The options available for {\tt StaticProps} are as follows:
591 \begin{longtable}[c]{|EFG|}
592 \caption{StaticProps Command-line Options}
593 \\ \hline
594 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
595 \endhead
596 \hline
597 \endfoot
598 -h& {\tt -{}-help} & Print help and exit \\
599 -V& {\tt -{}-version} & Print version and exit \\
600 -i& {\tt -{}-input} & input dump file \\
601 -o& {\tt -{}-output} & output file name \\
602 -n& {\tt -{}-step} & process every n frame (default=`1') \\
603 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
604 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
605 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
606 & {\tt -{}-sele1} & select the first StuntDouble set \\
607 & {\tt -{}-sele2} & select the second StuntDouble set \\
608 & {\tt -{}-sele3} & select the third StuntDouble set \\
609 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
610 & {\tt -{}-molname} & molecule name \\
611 & {\tt -{}-begin} & begin internal index \\
612 & {\tt -{}-end} & end internal index \\
613 \hline
614 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
615 \hline
616 & {\tt -{}-gofr} & $g(r)$ \\
617 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
618 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
619 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
620 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
621 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
622 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
623 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
624 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
625 \end{longtable}
626
627 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
628
629 {\tt DynamicProps} computes time correlation functions from the
630 configurations stored in a dump file. Typical examples of time
631 correlation functions are the mean square displacement and the
632 velocity autocorrelation functions. Once again, the selection
633 syntax can be used to specify the StuntDoubles that will be used for
634 the calculation. A general time correlation function can be thought
635 of as:
636 \begin{equation}
637 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
638 \end{equation}
639 where $\vec{u}_A(t)$ is a vector property associated with an atom of
640 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
641 vector property associated with an atom of type $B$ at a different
642 time $t^{\prime}$. In most autocorrelation functions, the vector
643 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
644 $B$) are identical, and the three calculations built in to {\tt
645 DynamicProps} make these assumptions. It is possible, however, to
646 make simple modifications to the {\tt DynamicProps} code to allow
647 the use of {\it cross} time correlation functions (i.e. with
648 different vectors). The ability to use two selection scripts to
649 select different types of atoms is already present in the code.
650
651 For large simulations, the trajectory files can sometimes reach
652 sizes in excess of several gigabytes. In order to effectively
653 analyze that amount of data. In order to prevent a situation where
654 the program runs out of memory due to large trajectories,
655 \texttt{dynamicProps} will estimate the size of free memory at
656 first, and determine the number of frames in each block, which
657 allows the operating system to load two blocks of data
658 simultaneously without swapping. Upon reading two blocks of the
659 trajectory, \texttt{dynamicProps} will calculate the time
660 correlation within the first block and the cross correlations
661 between the two blocks. This second block is then freed and then
662 incremented and the process repeated until the end of the
663 trajectory. Once the end is reached, the first block is freed then
664 incremented, until all frame pairs have been correlated in time.
665 This process is illustrated in
666 Fig.~\ref{oopseFig:dynamicPropsProcess}.
667
668 \begin{figure}
669 \centering
670 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
671 \caption[A representation of the block correlations in
672 \texttt{dynamicProps}]{This diagram illustrates block correlations
673 processing in \texttt{dynamicProps}. The shaded region represents
674 the self correlation of the block, and the open blocks are read one
675 at a time and the cross correlations between blocks are calculated.}
676 \label{oopseFig:dynamicPropsProcess}
677 \end{figure}
678
679 The options available for DynamicProps are as follows:
680 \begin{longtable}[c]{|EFG|}
681 \caption{DynamicProps Command-line Options}
682 \\ \hline
683 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
684 \endhead
685 \hline
686 \endfoot
687 -h& {\tt -{}-help} & Print help and exit \\
688 -V& {\tt -{}-version} & Print version and exit \\
689 -i& {\tt -{}-input} & input dump file \\
690 -o& {\tt -{}-output} & output file name \\
691 & {\tt -{}-sele1} & select first StuntDouble set \\
692 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
693 \hline
694 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
695 \hline
696 -r& {\tt -{}-rcorr} & compute mean square displacement \\
697 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
698 -d& {\tt -{}-dcorr} & compute dipole correlation function
699 \end{longtable}
700
701 \section{\label{appendixSection:tools}Other Useful Utilities}
702
703 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
704
705 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
706 which can be opened by other molecular dynamics viewers such as Jmol
707 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
708 as follows:
709
710
711 \begin{longtable}[c]{|EFG|}
712 \caption{Dump2XYZ Command-line Options}
713 \\ \hline
714 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
715 \endhead
716 \hline
717 \endfoot
718 -h & {\tt -{}-help} & Print help and exit \\
719 -V & {\tt -{}-version} & Print version and exit \\
720 -i & {\tt -{}-input} & input dump file \\
721 -o & {\tt -{}-output} & output file name \\
722 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
723 -w & {\tt -{}-water} & skip the the waters (default=off) \\
724 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
725 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
726 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
727 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
728 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
729 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
730 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
731 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
732 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
733 converted. \\
734 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
735 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
736 \end{longtable}
737
738 \subsection{\label{appendixSection:hydrodynamics}Hydro}
739
740 {\tt Hydro} can calculate resistance and diffusion tensors at the
741 center of resistance. Both tensors at the center of diffusion can
742 also be reported from the program, as well as the coordinates for
743 the beads which are used to approximate the arbitrary shapes. The
744 options available for Hydro are as follows:
745 \begin{longtable}[c]{|EFG|}
746 \caption{Hydrodynamics Command-line Options}
747 \\ \hline
748 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
749 \endhead
750 \hline
751 \endfoot
752 -h & {\tt -{}-help} & Print help and exit \\
753 -V & {\tt -{}-version} & Print version and exit \\
754 -i & {\tt -{}-input} & input dump file \\
755 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
756 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
757 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
758 \end{longtable}