ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2806 by tim, Tue Jun 6 20:49:05 2006 UTC

# Line 1 | Line 1
1 + \appendix
2   \chapter{\label{chapt:appendix}APPENDIX}
3  
4 + Designing object-oriented software is hard, and designing reusable
5 + object-oriented scientific software is even harder. Absence of
6 + applying modern software development practices is the bottleneck of
7 + Scientific Computing community\cite{wilson}. For instance, in the
8 + last 20 years , there are quite a few MD packages that were
9 + developed to solve common MD problems and perform robust simulations
10 + . However, many of the codes are legacy programs that are either
11 + poorly organized or extremely complex. Usually, these packages were
12 + contributed by scientists without official computer science
13 + training. The development of most MD applications are lack of strong
14 + coordination to enforce design and programming guidelines. Moreover,
15 + most MD programs also suffer from missing design and implement
16 + documents which is crucial to the maintenance and extensibility.
17 +
18   \section{\label{appendixSection:desginPattern}Design Pattern}
19  
20 + Design patterns are optimal solutions to commonly-occurring problems
21 + in software design. Although originated as an architectural concept
22 + for buildings and towns by Christopher Alexander \cite{alexander},
23 + software patterns first became popular with the wide acceptance of
24 + the book, Design Patterns: Elements of Reusable Object-Oriented
25 + Software \cite{gamma94}. Patterns reflect the experience, knowledge
26 + and insights of developers who have successfully used these patterns
27 + in their own work. Patterns are reusable. They provide a ready-made
28 + solution that can be adapted to different problems as necessary.
29 + Pattern are expressive. they provide a common vocabulary of
30 + solutions that can express large solutions succinctly.
31  
32 < \subsection{\label{appendixSection:visitorPattern}Visitor Pattern}
32 > Patterns are usually described using a format that includes the
33 > following information:
34 > \begin{enumerate}
35 >  \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
36 >  discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
37 >  in the literature. In this case it is common practice to document these nicknames or synonyms under
38 >  the heading of \emph{Aliases} or \emph{Also Known As}.
39 >  \item The \emph{motivation} or \emph{context} that this pattern applies
40 >  to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
41 >  \item The \emph{solution} to the problem that the pattern
42 >  addresses. It describes how to construct the necessary work products. The description may include
43 >  pictures, diagrams and prose which identify the pattern's structure, its participants, and their
44 >  collaborations, to show how the problem is solved.
45 >  \item The \emph{consequences} of using the given solution to solve a
46 >  problem, both positive and negative.
47 > \end{enumerate}
48  
49 < \subsection{\label{appendixSection:templatePattern}Template Pattern}
49 > As one of the latest advanced techniques emerged from
50 > object-oriented community, design patterns were applied in some of
51 > the modern scientific software applications, such as JMol, OOPSE
52 > \cite{Meineke05} and PROTOMOL \cite{Matthey05} \textit{etc}.
53  
54 < \subsection{\label{appendixSection:factoryPattern}Factory Pattern}
54 > \subsection{\label{appendixSection:singleton}Singleton}
55 > The Singleton pattern ensures that only one instance of a class is
56 > created. All objects that use an instance of that class use the same
57 > instance.
58  
59 < \section{\label{appendixSection:hierarchy}Hierarchy}
59 > \subsection{\label{appendixSection:factoryMethod}Factory Method}
60 > The Factory Method pattern is a creational pattern which deals with
61 > the problem of creating objects without specifying the exact class
62 > of object that will be created. Factory Method solves this problem
63 > by defining a separate method for creating the objects, which
64 > subclasses can then override to specify the derived type of product
65 > that will be created.
66  
14 \section{\label{appendixSection:selectionSyntax}Selection Syntax}
67  
68 < \section{\label{appendixSection:hydrodynamics}Hydrodynamics}
68 > \subsection{\label{appendixSection:visitorPattern}Visitor}
69 > The purpose of the Visitor Pattern is to encapsulate an operation
70 > that you want to perform on the elements of a data structure. In
71 > this way, you can change the operation being performed on a
72 > structure without the need of changing the classes of the elements
73 > that you are operating on.
74  
75 +
76 + \subsection{\label{appendixSection:templateMethod}Template Method}
77 +
78   \section{\label{appendixSection:analysisFramework}Analysis Framework}
79  
80 < \subsection{\label{appendixSection:staticProps}Factory Properties}
80 > \section{\label{appendixSection:concepts}Concepts}
81  
82 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
82 > OOPSE manipulates both traditional atoms as well as some objects
83 > that {\it behave like atoms}.  These objects can be rigid
84 > collections of atoms or atoms which have orientational degrees of
85 > freedom.  Here is a diagram of the class heirarchy:
86 >
87 > %\begin{figure}
88 > %\centering
89 > %\includegraphics[width=3in]{heirarchy.eps}
90 > %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
91 > %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
92 > %selection syntax allows the user to select any of the objects that
93 > %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
94 > %\end{figure}
95 >
96 > \begin{itemize}
97 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
98 > integrators and minimizers.
99 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
100 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
101 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
102 > DirectionalAtom}s which behaves as a single unit.
103 > \end{itemize}
104 >
105 > Every Molecule, Atom and DirectionalAtom in {\sc oopse} have their
106 > own names which are specified in the {\tt .md} file. In contrast,
107 > RigidBodies are denoted by their membership and index inside a
108 > particular molecule: [MoleculeName]\_RB\_[index] (the contents
109 > inside the brackets depend on the specifics of the simulation). The
110 > names of rigid bodies are generated automatically. For example, the
111 > name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
112 >
113 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
114 >
115 > The most general form of the select command is: {\tt select {\it
116 > expression}}
117 >
118 > This expression represents an arbitrary set of StuntDoubles (Atoms
119 > or RigidBodies) in {\sc oopse}. Expressions are composed of either
120 > name expressions, index expressions, predefined sets, user-defined
121 > expressions, comparison operators, within expressions, or logical
122 > combinations of the above expression types. Expressions can be
123 > combined using parentheses and the Boolean operators.
124 >
125 > \subsection{\label{appendixSection:logical}Logical expressions}
126 >
127 > The logical operators allow complex queries to be constructed out of
128 > simpler ones using the standard boolean connectives {\bf and}, {\bf
129 > or}, {\bf not}. Parentheses can be used to alter the precedence of
130 > the operators.
131 >
132 > \begin{center}
133 > \begin{tabular}{|ll|}
134 > \hline
135 > {\bf logical operator} & {\bf equivalent operator}  \\
136 > \hline
137 > and & ``\&'', ``\&\&'' \\
138 > or & ``$|$'', ``$||$'', ``,'' \\
139 > not & ``!''  \\
140 > \hline
141 > \end{tabular}
142 > \end{center}
143 >
144 > \subsection{\label{appendixSection:name}Name expressions}
145 >
146 > \begin{center}
147 > \begin{tabular}{|llp{2in}|}
148 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
149 > of
150 > examples} \\
151 > \hline expression without ``.'' & select DMPC & select all
152 > StuntDoubles
153 > belonging to all DMPC molecules \\
154 > & select C* & select all atoms which have atom types beginning with C
155 > \\
156 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
157 > only select the rigid bodies, and not the atoms belonging to them). \\
158 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
159 > O\_TIP3P
160 > atoms belonging to TIP3P molecules \\
161 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
162 > the first
163 > RigidBody in each DMPC molecule \\
164 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
165 > molecule \\
166 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
167 > select all atoms
168 > belonging to all rigid bodies within all DMPC molecules \\
169 > \hline
170 > \end{tabular}
171 > \end{center}
172 >
173 > \subsection{\label{appendixSection:index}Index expressions}
174 >
175 > \begin{center}
176 > \begin{tabular}{|lp{4in}|}
177 > \hline
178 > {\bf examples} & {\bf translation of examples} \\
179 > \hline
180 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
181 > select 20 to 30 & select all of the StuntDoubles belonging to
182 > molecules which have global indices between 20 (inclusive) and 30
183 > (exclusive) \\
184 > \hline
185 > \end{tabular}
186 > \end{center}
187 >
188 > \subsection{\label{appendixSection:predefined}Predefined sets}
189 >
190 > \begin{center}
191 > \begin{tabular}{|ll|}
192 > \hline
193 > {\bf keyword} & {\bf description} \\
194 > \hline
195 > all & select all StuntDoubles \\
196 > none & select none of the StuntDoubles \\
197 > \hline
198 > \end{tabular}
199 > \end{center}
200 >
201 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
202 >
203 > Users can define arbitrary terms to represent groups of
204 > StuntDoubles, and then use the define terms in select commands. The
205 > general form for the define command is: {\bf define {\it term
206 > expression}}
207 >
208 > Once defined, the user can specify such terms in boolean expressions
209 >
210 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
211 >
212 > {\tt select SSDWATER}
213 >
214 > \subsection{\label{appendixSection:comparison}Comparison expressions}
215 >
216 > StuntDoubles can be selected by using comparision operators on their
217 > properties. The general form for the comparison command is: a
218 > property name, followed by a comparision operator and then a number.
219 >
220 > \begin{center}
221 > \begin{tabular}{|l|l|}
222 > \hline
223 > {\bf property} & mass, charge \\
224 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
225 > ``$<=$'', ``$!=$'' \\
226 > \hline
227 > \end{tabular}
228 > \end{center}
229 >
230 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
231 > would select StuntDoubles which have mass greater than 16.0 and
232 > charges less than -2.
233 >
234 > \subsection{\label{appendixSection:within}Within expressions}
235 >
236 > The ``within'' keyword allows the user to select all StuntDoubles
237 > within the specified distance (in Angstroms) from a selection,
238 > including the selected atom itself. The general form for within
239 > selection is: {\tt select within(distance, expression)}
240 >
241 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
242 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
243 > atoms.
244 >
245 > \section{\label{appendixSection:tools}Tools which use the selection command}
246 >
247 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
248 >
249 > Dump2XYZ can transform an OOPSE dump file into a xyz file which can
250 > be opened by other molecular dynamics viewers such as Jmol and VMD.
251 > The options available for Dump2XYZ are as follows:
252 >
253 >
254 > \begin{longtable}[c]{|EFG|}
255 > \caption{Dump2XYZ Command-line Options}
256 > \\ \hline
257 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
258 > \endhead
259 > \hline
260 > \endfoot
261 >  -h & {\tt -{}-help} &                        Print help and exit \\
262 >  -V & {\tt -{}-version} &                     Print version and exit \\
263 >  -i & {\tt -{}-input=filename}  &             input dump file \\
264 >  -o & {\tt -{}-output=filename} &             output file name \\
265 >  -n & {\tt -{}-frame=INT}   &                 print every n frame  (default=`1') \\
266 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
267 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
268 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
269 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
270 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
271 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
272 >     & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
273 >     & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
274 >     &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
275 >  -s & {\tt -{}-selection=selection script} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
276 > converted. \\
277 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
278 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
279 > \end{longtable}
280 >
281 >
282 > \subsection{\label{appendixSection:StaticProps}StaticProps}
283 >
284 > {\tt StaticProps} can compute properties which are averaged over
285 > some or all of the configurations that are contained within a dump
286 > file. The most common example of a static property that can be
287 > computed is the pair distribution function between atoms of type $A$
288 > and other atoms of type $B$, $g_{AB}(r)$.  StaticProps can also be
289 > used to compute the density distributions of other molecules in a
290 > reference frame {\it fixed to the body-fixed reference frame} of a
291 > selected atom or rigid body.
292 >
293 > There are five seperate radial distribution functions availiable in
294 > OOPSE. Since every radial distrbution function invlove the
295 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
296 > -{}-sele2} must be specified to tell StaticProps which bodies to
297 > include in the calculation.
298 >
299 > \begin{description}
300 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
301 > \begin{equation*}
302 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
303 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
304 > \end{equation*}
305 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
306 > function. The angle is defined by the intermolecular vector
307 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
308 > \begin{equation*}
309 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
310 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
311 > \theta_{ij} - \cos \theta)\rangle
312 > \end{equation*}
313 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
314 > function. The angle is defined by the $z$-axes of the two
315 > DirectionalAtoms A and B.
316 > \begin{equation*}
317 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
318 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
319 > \omega_{ij} - \cos \omega)\rangle
320 > \end{equation*}
321 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
322 > space $\theta, \omega$ defined by the two angles mentioned above.
323 > \begin{equation*}
324 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
325 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
326 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
327 > \omega)\rangle
328 > \end{equation*}
329 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
330 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
331 > and {\tt -{}-refsele} must be given to define A's internal
332 > coordinate set as the reference frame for the calculation.
333 > \end{description}
334 >
335 > The vectors (and angles) associated with these angular pair
336 > distribution functions are most easily seen in the figure below:
337 >
338 > \begin{figure}
339 > \centering
340 > \includegraphics[width=3in]{definition.eps}
341 > \caption[Definitions of the angles between directional objects]{ \\
342 > Any two directional objects (DirectionalAtoms and RigidBodies) have
343 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
344 > their body-fixed frames.} \label{oopseFig:gofr}
345 > \end{figure}
346 >
347 > The options available for {\tt StaticProps} are as follows:
348 > \begin{longtable}[c]{|EFG|}
349 > \caption{StaticProps Command-line Options}
350 > \\ \hline
351 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
352 > \endhead
353 > \hline
354 > \endfoot
355 >  -h& {\tt -{}-help}                    &  Print help and exit \\
356 >  -V& {\tt -{}-version}                 &  Print version and exit \\
357 >  -i& {\tt -{}-input=filename}          &  input dump file \\
358 >  -o& {\tt -{}-output=filename}         &  output file name \\
359 >  -n& {\tt -{}-step=INT}                &  process every n frame  (default=`1') \\
360 >  -r& {\tt -{}-nrbins=INT}              &  number of bins for distance  (default=`100') \\
361 >  -a& {\tt -{}-nanglebins=INT}          &  number of bins for cos(angle)  (default= `50') \\
362 >  -l& {\tt -{}-length=DOUBLE}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
363 >    & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
364 >    & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
365 >    & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
366 >    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
367 >    & {\tt -{}-molname=STRING}           & molecule name \\
368 >    & {\tt -{}-begin=INT}                & begin internal index \\
369 >    & {\tt -{}-end=INT}                  & end internal index \\
370 > \hline
371 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
372 > \hline
373 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
374 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
375 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
376 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
377 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
378 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
379 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
380 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
381 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
382 > \end{longtable}
383 >
384 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
385 >
386 > {\tt DynamicProps} computes time correlation functions from the
387 > configurations stored in a dump file.  Typical examples of time
388 > correlation functions are the mean square displacement and the
389 > velocity autocorrelation functions.   Once again, the selection
390 > syntax can be used to specify the StuntDoubles that will be used for
391 > the calculation.  A general time correlation function can be thought
392 > of as:
393 > \begin{equation}
394 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
395 > \end{equation}
396 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
397 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
398 > vector property associated with an atom of type $B$ at a different
399 > time $t^{\prime}$.  In most autocorrelation functions, the vector
400 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
401 > $B$) are identical, and the three calculations built in to {\tt
402 > DynamicProps} make these assumptions.  It is possible, however, to
403 > make simple modifications to the {\tt DynamicProps} code to allow
404 > the use of {\it cross} time correlation functions (i.e. with
405 > different vectors).  The ability to use two selection scripts to
406 > select different types of atoms is already present in the code.
407 >
408 > The options available for DynamicProps are as follows:
409 > \begin{longtable}[c]{|EFG|}
410 > \caption{DynamicProps Command-line Options}
411 > \\ \hline
412 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
413 > \endhead
414 > \hline
415 > \endfoot
416 >  -h& {\tt -{}-help}                   & Print help and exit \\
417 >  -V& {\tt -{}-version}                & Print version and exit \\
418 >  -i& {\tt -{}-input=filename}         & input dump file \\
419 >  -o& {\tt -{}-output=filename}        & output file name \\
420 >    & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
421 >    & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
422 > \hline
423 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
424 > \hline
425 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
426 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
427 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
428 > \end{longtable}
429 >
430 > \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines