ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2838 by tim, Fri Jun 9 02:29:06 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{chapt:appendix}APPENDIX}
1 > \appendix
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4 + Designing object-oriented software is hard, and designing reusable
5 + object-oriented scientific software is even harder. Absence of
6 + applying modern software development practices is the bottleneck of
7 + Scientific Computing community\cite{Wilson2006}. For instance, in
8 + the last 20 years , there are quite a few MD packages that were
9 + developed to solve common MD problems and perform robust simulations
10 + . However, many of the codes are legacy programs that are either
11 + poorly organized or extremely complex. Usually, these packages were
12 + contributed by scientists without official computer science
13 + training. The development of most MD applications are lack of strong
14 + coordination to enforce design and programming guidelines. Moreover,
15 + most MD programs also suffer from missing design and implement
16 + documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38 +
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83 + Design patterns are optimal solutions to commonly-occurring problems
84 + in software design. Although originated as an architectural concept
85 + for buildings and towns by Christopher Alexander
86 + \cite{Alexander1987}, software patterns first became popular with
87 + the wide acceptance of the book, Design Patterns: Elements of
88 + Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 + the experience, knowledge and insights of developers who have
90 + successfully used these patterns in their own work. Patterns are
91 + reusable. They provide a ready-made solution that can be adapted to
92 + different problems as necessary. Pattern are expressive. they
93 + provide a common vocabulary of solutions that can express large
94 + solutions succinctly.
95  
96 < \subsection{\label{appendixSection:visitorPattern}Visitor Pattern}
96 > Patterns are usually described using a format that includes the
97 > following information:
98 > \begin{enumerate}
99 >  \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 >  discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 >  in the literature. In this case it is common practice to document these nicknames or synonyms under
102 >  the heading of \emph{Aliases} or \emph{Also Known As}.
103 >  \item The \emph{motivation} or \emph{context} that this pattern applies
104 >  to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 >  \item The \emph{solution} to the problem that the pattern
106 >  addresses. It describes how to construct the necessary work products. The description may include
107 >  pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 >  collaborations, to show how the problem is solved.
109 >  \item The \emph{consequences} of using the given solution to solve a
110 >  problem, both positive and negative.
111 > \end{enumerate}
112  
113 < \subsection{\label{appendixSection:templatePattern}Template Pattern}
113 > As one of the latest advanced techniques emerged from
114 > object-oriented community, design patterns were applied in some of
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120 < \subsection{\label{appendixSection:factoryPattern}Factory Pattern}
120 > \subsection{\label{appendixSection:singleton}Singleton}
121  
122 < \section{\label{appendixSection:hierarchy}Hierarchy}
122 > The Singleton pattern not only provides a mechanism to restrict
123 > instantiation of a class to one object, but also provides a global
124 > point of access to the object. Currently implemented as a global
125 > variable, the logging utility which reports error and warning
126 > messages to the console in {\sc OOPSE} is a good candidate for
127 > applying the Singleton pattern to avoid the global namespace
128 > pollution.Although the singleton pattern can be implemented in
129 > various ways  to account for different aspects of the software
130 > designs, such as lifespan control \textit{etc}, we only use the
131 > static data approach in {\sc OOPSE}. IntegratorFactory class is
132 > declared as
133  
134 < \section{\label{appendixSection:selectionSyntax}Selection Syntax}
134 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135  
136 < \section{\label{appendixSection:hydrodynamics}Hydrodynamics}
136 > class IntegratorFactory {
137 > public:
138 >  static IntegratorFactory*
139 >  getInstance();
140 > protected:
141 >  IntegratorFactory();
142 > private:
143 >  static IntegratorFactory* instance_;
144 > };
145  
146 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
146 > \end{lstlisting}
147  
148 < \subsection{\label{appendixSection:staticProps}Factory Properties}
148 > The corresponding implementation is
149  
150 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
150 > \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151 >
152 > IntegratorFactory::instance_ = NULL;
153 >
154 > IntegratorFactory* getInstance() {
155 >  if (instance_ == NULL){
156 >    instance_ = new IntegratorFactory;
157 >  }
158 >  return instance_;
159 > }
160 >
161 > \end{lstlisting}
162 >
163 > Since constructor is declared as protected, a client can not
164 > instantiate IntegratorFactory directly. Moreover, since the member
165 > function getInstance serves as the only entry of access to
166 > IntegratorFactory, this approach fulfills the basic requirement, a
167 > single instance. Another consequence of this approach is the
168 > automatic destruction since static data are destroyed upon program
169 > termination.
170 >
171 > \subsection{\label{appendixSection:factoryMethod}Factory Method}
172 >
173 > Categoried as a creational pattern, the Factory Method pattern deals
174 > with the problem of creating objects without specifying the exact
175 > class of object that will be created. Factory Method is typically
176 > implemented by delegating the creation operation to the subclasses.
177 > Parameterized Factory pattern where factory method (
178 > createIntegrator member function) creates products based on the
179 > identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180 > the identifier has been already registered, the factory method will
181 > invoke the corresponding creator (see List.~\ref{integratorCreator})
182 > which utilizes the modern C++ template technique to avoid excess
183 > subclassing.
184 >
185 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186 >
187 > class IntegratorFactory {
188 > public:
189 >  typedef std::map<string, IntegratorCreator*> CreatorMapType;
190 >
191 >  bool registerIntegrator(IntegratorCreator* creator) {
192 >    return creatorMap_.insert(creator->getIdent(), creator).second;
193 >  }
194 >
195 >  Integrator* createIntegrator(const string& id, SimInfo* info) {
196 >    Integrator* result = NULL;
197 >    CreatorMapType::iterator i = creatorMap_.find(id);
198 >    if (i != creatorMap_.end()) {
199 >      result = (i->second)->create(info);
200 >    }
201 >    return result;
202 >  }
203 >
204 > private:
205 >  CreatorMapType creatorMap_;
206 > };
207 > \end{lstlisting}
208 >
209 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210 >
211 > class IntegratorCreator {
212 > public:
213 >    IntegratorCreator(const string& ident) : ident_(ident) {}
214 >
215 >    const string& getIdent() const { return ident_; }
216 >
217 >    virtual Integrator* create(SimInfo* info) const = 0;
218 >
219 > private:
220 >    string ident_;
221 > };
222 >
223 > template<class ConcreteIntegrator>
224 > class IntegratorBuilder : public IntegratorCreator {
225 > public:
226 >  IntegratorBuilder(const string& ident)
227 >                   : IntegratorCreator(ident) {}
228 >  virtual  Integrator* create(SimInfo* info) const {
229 >    return new ConcreteIntegrator(info);
230 >  }
231 > };
232 > \end{lstlisting}
233 >
234 > \subsection{\label{appendixSection:visitorPattern}Visitor}
235 >
236 > The visitor pattern is designed to decouple the data structure and
237 > algorithms used upon them by collecting related operation from
238 > element classes into other visitor classes, which is equivalent to
239 > adding virtual functions into a set of classes without modifying
240 > their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241 > structure of Visitor pattern which is used extensively in {\tt
242 > Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243 > distinct operations are performed on different StuntDoubles (See the
244 > class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245 > in List.~\ref{appendixScheme:element}). Since the hierarchies
246 > remains stable, it is easy to define a visit operation (see
247 > List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248 > Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249 > manages a priority visitor list and handles the execution of every
250 > visitor in the priority list on different StuntDoubles.
251 >
252 > \begin{figure}
253 > \centering
254 > \includegraphics[width=\linewidth]{visitor.eps}
255 > \caption[The UML class diagram of Visitor patten] {The UML class
256 > diagram of Visitor patten.} \label{appendixFig:visitorUML}
257 > \end{figure}
258 >
259 > \begin{figure}
260 > \centering
261 > \includegraphics[width=\linewidth]{hierarchy.eps}
262 > \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263 > the class hierarchy. } \label{oopseFig:hierarchy}
264 > \end{figure}
265 >
266 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
267 >
268 > class StuntDouble { public:
269 >  virtual void accept(BaseVisitor* v) = 0;
270 > };
271 >
272 > class Atom: public StuntDouble { public:
273 >  virtual void accept{BaseVisitor* v*} {
274 >    v->visit(this);
275 >  }
276 > };
277 >
278 > class DirectionalAtom: public Atom { public:
279 >  virtual void accept{BaseVisitor* v*} {
280 >    v->visit(this);
281 >  }
282 > };
283 >
284 > class RigidBody: public StuntDouble { public:
285 >  virtual void accept{BaseVisitor* v*} {
286 >    v->visit(this);
287 >  }
288 > };
289 >
290 > \end{lstlisting}
291 >
292 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
293 >
294 > class BaseVisitor{
295 > public:
296 >  virtual void visit(Atom* atom);
297 >  virtual void visit(DirectionalAtom* datom);
298 >  virtual void visit(RigidBody* rb);
299 > };
300 >
301 > class BaseAtomVisitor:public BaseVisitor{ public:
302 >  virtual void visit(Atom* atom);
303 >  virtual void visit(DirectionalAtom* datom);
304 >  virtual void visit(RigidBody* rb);
305 > };
306 >
307 > class SSDAtomVisitor:public BaseAtomVisitor{ public:
308 >  virtual void visit(Atom* atom);
309 >  virtual void visit(DirectionalAtom* datom);
310 >  virtual void visit(RigidBody* rb);
311 > };
312 >
313 > class CompositeVisitor: public BaseVisitor {
314 > public:
315 >
316 >  typedef list<pair<BaseVisitor*, int> > VistorListType;
317 >  typedef VistorListType::iterator VisitorListIterator;
318 >  virtual void visit(Atom* atom) {
319 >    VisitorListIterator i;
320 >    BaseVisitor* curVisitor;
321 >    for(i = visitorList.begin();i != visitorList.end();++i) {
322 >      atom->accept(*i);
323 >    }
324 >  }
325 >
326 >  virtual void visit(DirectionalAtom* datom) {
327 >    VisitorListIterator i;
328 >    BaseVisitor* curVisitor;
329 >    for(i = visitorList.begin();i != visitorList.end();++i) {
330 >      atom->accept(*i);
331 >    }
332 >  }
333 >
334 >  virtual void visit(RigidBody* rb) {
335 >    VisitorListIterator i;
336 >    std::vector<Atom*> myAtoms;
337 >    std::vector<Atom*>::iterator ai;
338 >    myAtoms = rb->getAtoms();
339 >    for(i = visitorList.begin();i != visitorList.end();++i) {{
340 >      rb->accept(*i);
341 >      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
342 >        (*ai)->accept(*i);
343 >    }
344 >  }
345 >
346 >  void addVisitor(BaseVisitor* v, int priority);
347 >
348 >  protected:
349 >    VistorListType visitorList;
350 > };
351 >
352 > \end{lstlisting}
353 >
354 > \section{\label{appendixSection:concepts}Concepts}
355 >
356 > OOPSE manipulates both traditional atoms as well as some objects
357 > that {\it behave like atoms}.  These objects can be rigid
358 > collections of atoms or atoms which have orientational degrees of
359 > freedom.  A diagram of the class hierarchy is illustrated in
360 > Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
361 > DirectionalAtom in {\sc OOPSE} have their own names which are
362 > specified in the {\tt .md} file. In contrast, RigidBodies are
363 > denoted by their membership and index inside a particular molecule:
364 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
365 > on the specifics of the simulation). The names of rigid bodies are
366 > generated automatically. For example, the name of the first rigid
367 > body in a DMPC molecule is DMPC\_RB\_0.
368 > \begin{itemize}
369 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
370 > integrators and minimizers.
371 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
372 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
373 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
374 > DirectionalAtom}s which behaves as a single unit.
375 > \end{itemize}
376 >
377 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
378 >
379 > {\sc OOPSE} provides a powerful selection utility to select
380 > StuntDoubles. The most general form of the select command is:
381 >
382 > {\tt select {\it expression}}.
383 >
384 > This expression represents an arbitrary set of StuntDoubles (Atoms
385 > or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
386 > name expressions, index expressions, predefined sets, user-defined
387 > expressions, comparison operators, within expressions, or logical
388 > combinations of the above expression types. Expressions can be
389 > combined using parentheses and the Boolean operators.
390 >
391 > \subsection{\label{appendixSection:logical}Logical expressions}
392 >
393 > The logical operators allow complex queries to be constructed out of
394 > simpler ones using the standard boolean connectives {\bf and}, {\bf
395 > or}, {\bf not}. Parentheses can be used to alter the precedence of
396 > the operators.
397 >
398 > \begin{center}
399 > \begin{tabular}{|ll|}
400 > \hline
401 > {\bf logical operator} & {\bf equivalent operator}  \\
402 > \hline
403 > and & ``\&'', ``\&\&'' \\
404 > or & ``$|$'', ``$||$'', ``,'' \\
405 > not & ``!''  \\
406 > \hline
407 > \end{tabular}
408 > \end{center}
409 >
410 > \subsection{\label{appendixSection:name}Name expressions}
411 >
412 > \begin{center}
413 > \begin{tabular}{|llp{2in}|}
414 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
415 > of
416 > examples} \\
417 > \hline expression without ``.'' & select DMPC & select all
418 > StuntDoubles
419 > belonging to all DMPC molecules \\
420 > & select C* & select all atoms which have atom types beginning with C
421 > \\
422 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
423 > only select the rigid bodies, and not the atoms belonging to them). \\
424 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
425 > O\_TIP3P
426 > atoms belonging to TIP3P molecules \\
427 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
428 > the first
429 > RigidBody in each DMPC molecule \\
430 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
431 > molecule \\
432 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
433 > select all atoms
434 > belonging to all rigid bodies within all DMPC molecules \\
435 > \hline
436 > \end{tabular}
437 > \end{center}
438 >
439 > \subsection{\label{appendixSection:index}Index expressions}
440 >
441 > \begin{center}
442 > \begin{tabular}{|lp{4in}|}
443 > \hline
444 > {\bf examples} & {\bf translation of examples} \\
445 > \hline
446 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
447 > select 20 to 30 & select all of the StuntDoubles belonging to
448 > molecules which have global indices between 20 (inclusive) and 30
449 > (exclusive) \\
450 > \hline
451 > \end{tabular}
452 > \end{center}
453 >
454 > \subsection{\label{appendixSection:predefined}Predefined sets}
455 >
456 > \begin{center}
457 > \begin{tabular}{|ll|}
458 > \hline
459 > {\bf keyword} & {\bf description} \\
460 > \hline
461 > all & select all StuntDoubles \\
462 > none & select none of the StuntDoubles \\
463 > \hline
464 > \end{tabular}
465 > \end{center}
466 >
467 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
468 >
469 > Users can define arbitrary terms to represent groups of
470 > StuntDoubles, and then use the define terms in select commands. The
471 > general form for the define command is: {\bf define {\it term
472 > expression}}. Once defined, the user can specify such terms in
473 > boolean expressions
474 >
475 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
476 >
477 > {\tt select SSDWATER}
478 >
479 > \subsection{\label{appendixSection:comparison}Comparison expressions}
480 >
481 > StuntDoubles can be selected by using comparision operators on their
482 > properties. The general form for the comparison command is: a
483 > property name, followed by a comparision operator and then a number.
484 >
485 > \begin{center}
486 > \begin{tabular}{|l|l|}
487 > \hline
488 > {\bf property} & mass, charge \\
489 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
490 > ``$<=$'', ``$!=$'' \\
491 > \hline
492 > \end{tabular}
493 > \end{center}
494 >
495 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
496 > would select StuntDoubles which have mass greater than 16.0 and
497 > charges less than -2.
498 >
499 > \subsection{\label{appendixSection:within}Within expressions}
500 >
501 > The ``within'' keyword allows the user to select all StuntDoubles
502 > within the specified distance (in Angstroms) from a selection,
503 > including the selected atom itself. The general form for within
504 > selection is: {\tt select within(distance, expression)}
505 >
506 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
507 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
508 > atoms.
509 >
510 >
511 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
512 >
513 > \subsection{\label{appendixSection:StaticProps}StaticProps}
514 >
515 > {\tt StaticProps} can compute properties which are averaged over
516 > some or all of the configurations that are contained within a dump
517 > file. The most common example of a static property that can be
518 > computed is the pair distribution function between atoms of type $A$
519 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
520 > also be used to compute the density distributions of other molecules
521 > in a reference frame {\it fixed to the body-fixed reference frame}
522 > of a selected atom or rigid body.
523 >
524 > There are five seperate radial distribution functions availiable in
525 > OOPSE. Since every radial distrbution function invlove the
526 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
527 > -{}-sele2} must be specified to tell StaticProps which bodies to
528 > include in the calculation.
529 >
530 > \begin{description}
531 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
532 > \begin{equation*}
533 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
534 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
535 > \end{equation*}
536 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
537 > function. The angle is defined by the intermolecular vector
538 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
539 > \begin{equation*}
540 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
541 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
542 > \theta_{ij} - \cos \theta)\rangle
543 > \end{equation*}
544 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
545 > function. The angle is defined by the $z$-axes of the two
546 > DirectionalAtoms A and B.
547 > \begin{equation*}
548 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
549 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
550 > \omega_{ij} - \cos \omega)\rangle
551 > \end{equation*}
552 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
553 > space $\theta, \omega$ defined by the two angles mentioned above.
554 > \begin{equation*}
555 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
556 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
557 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
558 > \omega)\rangle
559 > \end{equation*}
560 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
561 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
562 > and {\tt -{}-refsele} must be given to define A's internal
563 > coordinate set as the reference frame for the calculation.
564 > \end{description}
565 >
566 > The vectors (and angles) associated with these angular pair
567 > distribution functions are most easily seen in the figure below:
568 >
569 > \begin{figure}
570 > \centering
571 > \includegraphics[width=3in]{definition.eps}
572 > \caption[Definitions of the angles between directional objects]{ \\
573 > Any two directional objects (DirectionalAtoms and RigidBodies) have
574 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
575 > their body-fixed frames.} \label{oopseFig:gofr}
576 > \end{figure}
577 >
578 > Due to the fact that the selected StuntDoubles from two selections
579 > may be overlapped, {\tt StaticProps} performs the calculation in
580 > three stages which are illustrated in
581 > Fig.~\ref{oopseFig:staticPropsProcess}.
582 >
583 > \begin{figure}
584 > \centering
585 > \includegraphics[width=\linewidth]{staticPropsProcess.eps}
586 > \caption[A representation of the three-stage correlations in
587 > \texttt{StaticProps}]{This diagram illustrates three-stage
588 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
589 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
590 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
591 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
592 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
593 > the contrary, the third stage($C$ and $C$) are completely
594 > overlapping} \label{oopseFig:staticPropsProcess}
595 > \end{figure}
596 >
597 > The options available for {\tt StaticProps} are as follows:
598 > \begin{longtable}[c]{|EFG|}
599 > \caption{StaticProps Command-line Options}
600 > \\ \hline
601 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
602 > \endhead
603 > \hline
604 > \endfoot
605 >  -h& {\tt -{}-help}                    &  Print help and exit \\
606 >  -V& {\tt -{}-version}                 &  Print version and exit \\
607 >  -i& {\tt -{}-input}          &  input dump file \\
608 >  -o& {\tt -{}-output}         &  output file name \\
609 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
610 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
611 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
612 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
613 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
614 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
615 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
616 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
617 >    & {\tt -{}-molname}           & molecule name \\
618 >    & {\tt -{}-begin}                & begin internal index \\
619 >    & {\tt -{}-end}                  & end internal index \\
620 > \hline
621 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
622 > \hline
623 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
624 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
625 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
626 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
627 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
628 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
629 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
630 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
631 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
632 > \end{longtable}
633 >
634 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
635 >
636 > {\tt DynamicProps} computes time correlation functions from the
637 > configurations stored in a dump file.  Typical examples of time
638 > correlation functions are the mean square displacement and the
639 > velocity autocorrelation functions.   Once again, the selection
640 > syntax can be used to specify the StuntDoubles that will be used for
641 > the calculation.  A general time correlation function can be thought
642 > of as:
643 > \begin{equation}
644 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
645 > \end{equation}
646 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
647 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
648 > vector property associated with an atom of type $B$ at a different
649 > time $t^{\prime}$.  In most autocorrelation functions, the vector
650 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
651 > $B$) are identical, and the three calculations built in to {\tt
652 > DynamicProps} make these assumptions.  It is possible, however, to
653 > make simple modifications to the {\tt DynamicProps} code to allow
654 > the use of {\it cross} time correlation functions (i.e. with
655 > different vectors).  The ability to use two selection scripts to
656 > select different types of atoms is already present in the code.
657 >
658 > For large simulations, the trajectory files can sometimes reach
659 > sizes in excess of several gigabytes. In order to effectively
660 > analyze that amount of data. In order to prevent a situation where
661 > the program runs out of memory due to large trajectories,
662 > \texttt{dynamicProps} will estimate the size of free memory at
663 > first, and determine the number of frames in each block, which
664 > allows the operating system to load two blocks of data
665 > simultaneously without swapping. Upon reading two blocks of the
666 > trajectory, \texttt{dynamicProps} will calculate the time
667 > correlation within the first block and the cross correlations
668 > between the two blocks. This second block is then freed and then
669 > incremented and the process repeated until the end of the
670 > trajectory. Once the end is reached, the first block is freed then
671 > incremented, until all frame pairs have been correlated in time.
672 > This process is illustrated in
673 > Fig.~\ref{oopseFig:dynamicPropsProcess}.
674 >
675 > \begin{figure}
676 > \centering
677 > \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
678 > \caption[A representation of the block correlations in
679 > \texttt{dynamicProps}]{This diagram illustrates block correlations
680 > processing in \texttt{dynamicProps}. The shaded region represents
681 > the self correlation of the block, and the open blocks are read one
682 > at a time and the cross correlations between blocks are calculated.}
683 > \label{oopseFig:dynamicPropsProcess}
684 > \end{figure}
685 >
686 > The options available for DynamicProps are as follows:
687 > \begin{longtable}[c]{|EFG|}
688 > \caption{DynamicProps Command-line Options}
689 > \\ \hline
690 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
691 > \endhead
692 > \hline
693 > \endfoot
694 >  -h& {\tt -{}-help}                   & Print help and exit \\
695 >  -V& {\tt -{}-version}                & Print version and exit \\
696 >  -i& {\tt -{}-input}         & input dump file \\
697 >  -o& {\tt -{}-output}        & output file name \\
698 >    & {\tt -{}-sele1} & select first StuntDouble set \\
699 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
700 > \hline
701 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
702 > \hline
703 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
704 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
705 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
706 > \end{longtable}
707 >
708 > \section{\label{appendixSection:tools}Other Useful Utilities}
709 >
710 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
711 >
712 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
713 > which can be opened by other molecular dynamics viewers such as Jmol
714 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
715 > as follows:
716 >
717 >
718 > \begin{longtable}[c]{|EFG|}
719 > \caption{Dump2XYZ Command-line Options}
720 > \\ \hline
721 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
722 > \endhead
723 > \hline
724 > \endfoot
725 >  -h & {\tt -{}-help} &                        Print help and exit \\
726 >  -V & {\tt -{}-version} &                     Print version and exit \\
727 >  -i & {\tt -{}-input}  &             input dump file \\
728 >  -o & {\tt -{}-output} &             output file name \\
729 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
730 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
731 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
732 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
733 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
734 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
735 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
736 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
737 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
738 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
739 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
740 > converted. \\
741 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
742 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
743 > \end{longtable}
744 >
745 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
746 >
747 > {\tt Hydro} can calculate resistance and diffusion tensors at the
748 > center of resistance. Both tensors at the center of diffusion can
749 > also be reported from the program, as well as the coordinates for
750 > the beads which are used to approximate the arbitrary shapes. The
751 > options available for Hydro are as follows:
752 > \begin{longtable}[c]{|EFG|}
753 > \caption{Hydrodynamics Command-line Options}
754 > \\ \hline
755 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
756 > \endhead
757 > \hline
758 > \endfoot
759 >  -h & {\tt -{}-help} &                        Print help and exit \\
760 >  -V & {\tt -{}-version} &                     Print version and exit \\
761 >  -i & {\tt -{}-input}  &             input dump file \\
762 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
763 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
764 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
765 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines