ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2838
Committed: Fri Jun 9 02:29:06 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 33215 byte(s)
Log Message:
minor format change

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121
122 The Singleton pattern not only provides a mechanism to restrict
123 instantiation of a class to one object, but also provides a global
124 point of access to the object. Currently implemented as a global
125 variable, the logging utility which reports error and warning
126 messages to the console in {\sc OOPSE} is a good candidate for
127 applying the Singleton pattern to avoid the global namespace
128 pollution.Although the singleton pattern can be implemented in
129 various ways to account for different aspects of the software
130 designs, such as lifespan control \textit{etc}, we only use the
131 static data approach in {\sc OOPSE}. IntegratorFactory class is
132 declared as
133
134 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135
136 class IntegratorFactory {
137 public:
138 static IntegratorFactory*
139 getInstance();
140 protected:
141 IntegratorFactory();
142 private:
143 static IntegratorFactory* instance_;
144 };
145
146 \end{lstlisting}
147
148 The corresponding implementation is
149
150 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151
152 IntegratorFactory::instance_ = NULL;
153
154 IntegratorFactory* getInstance() {
155 if (instance_ == NULL){
156 instance_ = new IntegratorFactory;
157 }
158 return instance_;
159 }
160
161 \end{lstlisting}
162
163 Since constructor is declared as protected, a client can not
164 instantiate IntegratorFactory directly. Moreover, since the member
165 function getInstance serves as the only entry of access to
166 IntegratorFactory, this approach fulfills the basic requirement, a
167 single instance. Another consequence of this approach is the
168 automatic destruction since static data are destroyed upon program
169 termination.
170
171 \subsection{\label{appendixSection:factoryMethod}Factory Method}
172
173 Categoried as a creational pattern, the Factory Method pattern deals
174 with the problem of creating objects without specifying the exact
175 class of object that will be created. Factory Method is typically
176 implemented by delegating the creation operation to the subclasses.
177 Parameterized Factory pattern where factory method (
178 createIntegrator member function) creates products based on the
179 identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180 the identifier has been already registered, the factory method will
181 invoke the corresponding creator (see List.~\ref{integratorCreator})
182 which utilizes the modern C++ template technique to avoid excess
183 subclassing.
184
185 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186
187 class IntegratorFactory {
188 public:
189 typedef std::map<string, IntegratorCreator*> CreatorMapType;
190
191 bool registerIntegrator(IntegratorCreator* creator) {
192 return creatorMap_.insert(creator->getIdent(), creator).second;
193 }
194
195 Integrator* createIntegrator(const string& id, SimInfo* info) {
196 Integrator* result = NULL;
197 CreatorMapType::iterator i = creatorMap_.find(id);
198 if (i != creatorMap_.end()) {
199 result = (i->second)->create(info);
200 }
201 return result;
202 }
203
204 private:
205 CreatorMapType creatorMap_;
206 };
207 \end{lstlisting}
208
209 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210
211 class IntegratorCreator {
212 public:
213 IntegratorCreator(const string& ident) : ident_(ident) {}
214
215 const string& getIdent() const { return ident_; }
216
217 virtual Integrator* create(SimInfo* info) const = 0;
218
219 private:
220 string ident_;
221 };
222
223 template<class ConcreteIntegrator>
224 class IntegratorBuilder : public IntegratorCreator {
225 public:
226 IntegratorBuilder(const string& ident)
227 : IntegratorCreator(ident) {}
228 virtual Integrator* create(SimInfo* info) const {
229 return new ConcreteIntegrator(info);
230 }
231 };
232 \end{lstlisting}
233
234 \subsection{\label{appendixSection:visitorPattern}Visitor}
235
236 The visitor pattern is designed to decouple the data structure and
237 algorithms used upon them by collecting related operation from
238 element classes into other visitor classes, which is equivalent to
239 adding virtual functions into a set of classes without modifying
240 their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241 structure of Visitor pattern which is used extensively in {\tt
242 Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243 distinct operations are performed on different StuntDoubles (See the
244 class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245 in List.~\ref{appendixScheme:element}). Since the hierarchies
246 remains stable, it is easy to define a visit operation (see
247 List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248 Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249 manages a priority visitor list and handles the execution of every
250 visitor in the priority list on different StuntDoubles.
251
252 \begin{figure}
253 \centering
254 \includegraphics[width=\linewidth]{visitor.eps}
255 \caption[The UML class diagram of Visitor patten] {The UML class
256 diagram of Visitor patten.} \label{appendixFig:visitorUML}
257 \end{figure}
258
259 \begin{figure}
260 \centering
261 \includegraphics[width=\linewidth]{hierarchy.eps}
262 \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263 the class hierarchy. } \label{oopseFig:hierarchy}
264 \end{figure}
265
266 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
267
268 class StuntDouble { public:
269 virtual void accept(BaseVisitor* v) = 0;
270 };
271
272 class Atom: public StuntDouble { public:
273 virtual void accept{BaseVisitor* v*} {
274 v->visit(this);
275 }
276 };
277
278 class DirectionalAtom: public Atom { public:
279 virtual void accept{BaseVisitor* v*} {
280 v->visit(this);
281 }
282 };
283
284 class RigidBody: public StuntDouble { public:
285 virtual void accept{BaseVisitor* v*} {
286 v->visit(this);
287 }
288 };
289
290 \end{lstlisting}
291
292 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
293
294 class BaseVisitor{
295 public:
296 virtual void visit(Atom* atom);
297 virtual void visit(DirectionalAtom* datom);
298 virtual void visit(RigidBody* rb);
299 };
300
301 class BaseAtomVisitor:public BaseVisitor{ public:
302 virtual void visit(Atom* atom);
303 virtual void visit(DirectionalAtom* datom);
304 virtual void visit(RigidBody* rb);
305 };
306
307 class SSDAtomVisitor:public BaseAtomVisitor{ public:
308 virtual void visit(Atom* atom);
309 virtual void visit(DirectionalAtom* datom);
310 virtual void visit(RigidBody* rb);
311 };
312
313 class CompositeVisitor: public BaseVisitor {
314 public:
315
316 typedef list<pair<BaseVisitor*, int> > VistorListType;
317 typedef VistorListType::iterator VisitorListIterator;
318 virtual void visit(Atom* atom) {
319 VisitorListIterator i;
320 BaseVisitor* curVisitor;
321 for(i = visitorList.begin();i != visitorList.end();++i) {
322 atom->accept(*i);
323 }
324 }
325
326 virtual void visit(DirectionalAtom* datom) {
327 VisitorListIterator i;
328 BaseVisitor* curVisitor;
329 for(i = visitorList.begin();i != visitorList.end();++i) {
330 atom->accept(*i);
331 }
332 }
333
334 virtual void visit(RigidBody* rb) {
335 VisitorListIterator i;
336 std::vector<Atom*> myAtoms;
337 std::vector<Atom*>::iterator ai;
338 myAtoms = rb->getAtoms();
339 for(i = visitorList.begin();i != visitorList.end();++i) {{
340 rb->accept(*i);
341 for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
342 (*ai)->accept(*i);
343 }
344 }
345
346 void addVisitor(BaseVisitor* v, int priority);
347
348 protected:
349 VistorListType visitorList;
350 };
351
352 \end{lstlisting}
353
354 \section{\label{appendixSection:concepts}Concepts}
355
356 OOPSE manipulates both traditional atoms as well as some objects
357 that {\it behave like atoms}. These objects can be rigid
358 collections of atoms or atoms which have orientational degrees of
359 freedom. A diagram of the class hierarchy is illustrated in
360 Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
361 DirectionalAtom in {\sc OOPSE} have their own names which are
362 specified in the {\tt .md} file. In contrast, RigidBodies are
363 denoted by their membership and index inside a particular molecule:
364 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
365 on the specifics of the simulation). The names of rigid bodies are
366 generated automatically. For example, the name of the first rigid
367 body in a DMPC molecule is DMPC\_RB\_0.
368 \begin{itemize}
369 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
370 integrators and minimizers.
371 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
372 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
373 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
374 DirectionalAtom}s which behaves as a single unit.
375 \end{itemize}
376
377 \section{\label{appendixSection:syntax}Syntax of the Select Command}
378
379 {\sc OOPSE} provides a powerful selection utility to select
380 StuntDoubles. The most general form of the select command is:
381
382 {\tt select {\it expression}}.
383
384 This expression represents an arbitrary set of StuntDoubles (Atoms
385 or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
386 name expressions, index expressions, predefined sets, user-defined
387 expressions, comparison operators, within expressions, or logical
388 combinations of the above expression types. Expressions can be
389 combined using parentheses and the Boolean operators.
390
391 \subsection{\label{appendixSection:logical}Logical expressions}
392
393 The logical operators allow complex queries to be constructed out of
394 simpler ones using the standard boolean connectives {\bf and}, {\bf
395 or}, {\bf not}. Parentheses can be used to alter the precedence of
396 the operators.
397
398 \begin{center}
399 \begin{tabular}{|ll|}
400 \hline
401 {\bf logical operator} & {\bf equivalent operator} \\
402 \hline
403 and & ``\&'', ``\&\&'' \\
404 or & ``$|$'', ``$||$'', ``,'' \\
405 not & ``!'' \\
406 \hline
407 \end{tabular}
408 \end{center}
409
410 \subsection{\label{appendixSection:name}Name expressions}
411
412 \begin{center}
413 \begin{tabular}{|llp{2in}|}
414 \hline {\bf type of expression} & {\bf examples} & {\bf translation
415 of
416 examples} \\
417 \hline expression without ``.'' & select DMPC & select all
418 StuntDoubles
419 belonging to all DMPC molecules \\
420 & select C* & select all atoms which have atom types beginning with C
421 \\
422 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
423 only select the rigid bodies, and not the atoms belonging to them). \\
424 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
425 O\_TIP3P
426 atoms belonging to TIP3P molecules \\
427 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
428 the first
429 RigidBody in each DMPC molecule \\
430 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
431 molecule \\
432 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
433 select all atoms
434 belonging to all rigid bodies within all DMPC molecules \\
435 \hline
436 \end{tabular}
437 \end{center}
438
439 \subsection{\label{appendixSection:index}Index expressions}
440
441 \begin{center}
442 \begin{tabular}{|lp{4in}|}
443 \hline
444 {\bf examples} & {\bf translation of examples} \\
445 \hline
446 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
447 select 20 to 30 & select all of the StuntDoubles belonging to
448 molecules which have global indices between 20 (inclusive) and 30
449 (exclusive) \\
450 \hline
451 \end{tabular}
452 \end{center}
453
454 \subsection{\label{appendixSection:predefined}Predefined sets}
455
456 \begin{center}
457 \begin{tabular}{|ll|}
458 \hline
459 {\bf keyword} & {\bf description} \\
460 \hline
461 all & select all StuntDoubles \\
462 none & select none of the StuntDoubles \\
463 \hline
464 \end{tabular}
465 \end{center}
466
467 \subsection{\label{appendixSection:userdefined}User-defined expressions}
468
469 Users can define arbitrary terms to represent groups of
470 StuntDoubles, and then use the define terms in select commands. The
471 general form for the define command is: {\bf define {\it term
472 expression}}. Once defined, the user can specify such terms in
473 boolean expressions
474
475 {\tt define SSDWATER SSD or SSD1 or SSDRF}
476
477 {\tt select SSDWATER}
478
479 \subsection{\label{appendixSection:comparison}Comparison expressions}
480
481 StuntDoubles can be selected by using comparision operators on their
482 properties. The general form for the comparison command is: a
483 property name, followed by a comparision operator and then a number.
484
485 \begin{center}
486 \begin{tabular}{|l|l|}
487 \hline
488 {\bf property} & mass, charge \\
489 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
490 ``$<=$'', ``$!=$'' \\
491 \hline
492 \end{tabular}
493 \end{center}
494
495 For example, the phrase {\tt select mass > 16.0 and charge < -2}
496 would select StuntDoubles which have mass greater than 16.0 and
497 charges less than -2.
498
499 \subsection{\label{appendixSection:within}Within expressions}
500
501 The ``within'' keyword allows the user to select all StuntDoubles
502 within the specified distance (in Angstroms) from a selection,
503 including the selected atom itself. The general form for within
504 selection is: {\tt select within(distance, expression)}
505
506 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
507 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
508 atoms.
509
510
511 \section{\label{appendixSection:analysisFramework}Analysis Framework}
512
513 \subsection{\label{appendixSection:StaticProps}StaticProps}
514
515 {\tt StaticProps} can compute properties which are averaged over
516 some or all of the configurations that are contained within a dump
517 file. The most common example of a static property that can be
518 computed is the pair distribution function between atoms of type $A$
519 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
520 also be used to compute the density distributions of other molecules
521 in a reference frame {\it fixed to the body-fixed reference frame}
522 of a selected atom or rigid body.
523
524 There are five seperate radial distribution functions availiable in
525 OOPSE. Since every radial distrbution function invlove the
526 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
527 -{}-sele2} must be specified to tell StaticProps which bodies to
528 include in the calculation.
529
530 \begin{description}
531 \item[{\tt -{}-gofr}] Computes the pair distribution function,
532 \begin{equation*}
533 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
534 \sum_{j \in B} \delta(r - r_{ij}) \rangle
535 \end{equation*}
536 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
537 function. The angle is defined by the intermolecular vector
538 $\vec{r}$ and $z$-axis of DirectionalAtom A,
539 \begin{equation*}
540 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
541 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
542 \theta_{ij} - \cos \theta)\rangle
543 \end{equation*}
544 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
545 function. The angle is defined by the $z$-axes of the two
546 DirectionalAtoms A and B.
547 \begin{equation*}
548 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
549 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
550 \omega_{ij} - \cos \omega)\rangle
551 \end{equation*}
552 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
553 space $\theta, \omega$ defined by the two angles mentioned above.
554 \begin{equation*}
555 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
556 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
557 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
558 \omega)\rangle
559 \end{equation*}
560 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
561 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
562 and {\tt -{}-refsele} must be given to define A's internal
563 coordinate set as the reference frame for the calculation.
564 \end{description}
565
566 The vectors (and angles) associated with these angular pair
567 distribution functions are most easily seen in the figure below:
568
569 \begin{figure}
570 \centering
571 \includegraphics[width=3in]{definition.eps}
572 \caption[Definitions of the angles between directional objects]{ \\
573 Any two directional objects (DirectionalAtoms and RigidBodies) have
574 a set of two angles ($\theta$, and $\omega$) between the z-axes of
575 their body-fixed frames.} \label{oopseFig:gofr}
576 \end{figure}
577
578 Due to the fact that the selected StuntDoubles from two selections
579 may be overlapped, {\tt StaticProps} performs the calculation in
580 three stages which are illustrated in
581 Fig.~\ref{oopseFig:staticPropsProcess}.
582
583 \begin{figure}
584 \centering
585 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
586 \caption[A representation of the three-stage correlations in
587 \texttt{StaticProps}]{This diagram illustrates three-stage
588 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
589 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
590 -{}-sele2} respectively, while $C$ is the number of stuntdobules
591 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
592 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
593 the contrary, the third stage($C$ and $C$) are completely
594 overlapping} \label{oopseFig:staticPropsProcess}
595 \end{figure}
596
597 The options available for {\tt StaticProps} are as follows:
598 \begin{longtable}[c]{|EFG|}
599 \caption{StaticProps Command-line Options}
600 \\ \hline
601 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
602 \endhead
603 \hline
604 \endfoot
605 -h& {\tt -{}-help} & Print help and exit \\
606 -V& {\tt -{}-version} & Print version and exit \\
607 -i& {\tt -{}-input} & input dump file \\
608 -o& {\tt -{}-output} & output file name \\
609 -n& {\tt -{}-step} & process every n frame (default=`1') \\
610 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
611 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
612 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
613 & {\tt -{}-sele1} & select the first StuntDouble set \\
614 & {\tt -{}-sele2} & select the second StuntDouble set \\
615 & {\tt -{}-sele3} & select the third StuntDouble set \\
616 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
617 & {\tt -{}-molname} & molecule name \\
618 & {\tt -{}-begin} & begin internal index \\
619 & {\tt -{}-end} & end internal index \\
620 \hline
621 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
622 \hline
623 & {\tt -{}-gofr} & $g(r)$ \\
624 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
625 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
626 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
627 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
628 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
629 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
630 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
631 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
632 \end{longtable}
633
634 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
635
636 {\tt DynamicProps} computes time correlation functions from the
637 configurations stored in a dump file. Typical examples of time
638 correlation functions are the mean square displacement and the
639 velocity autocorrelation functions. Once again, the selection
640 syntax can be used to specify the StuntDoubles that will be used for
641 the calculation. A general time correlation function can be thought
642 of as:
643 \begin{equation}
644 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
645 \end{equation}
646 where $\vec{u}_A(t)$ is a vector property associated with an atom of
647 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
648 vector property associated with an atom of type $B$ at a different
649 time $t^{\prime}$. In most autocorrelation functions, the vector
650 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
651 $B$) are identical, and the three calculations built in to {\tt
652 DynamicProps} make these assumptions. It is possible, however, to
653 make simple modifications to the {\tt DynamicProps} code to allow
654 the use of {\it cross} time correlation functions (i.e. with
655 different vectors). The ability to use two selection scripts to
656 select different types of atoms is already present in the code.
657
658 For large simulations, the trajectory files can sometimes reach
659 sizes in excess of several gigabytes. In order to effectively
660 analyze that amount of data. In order to prevent a situation where
661 the program runs out of memory due to large trajectories,
662 \texttt{dynamicProps} will estimate the size of free memory at
663 first, and determine the number of frames in each block, which
664 allows the operating system to load two blocks of data
665 simultaneously without swapping. Upon reading two blocks of the
666 trajectory, \texttt{dynamicProps} will calculate the time
667 correlation within the first block and the cross correlations
668 between the two blocks. This second block is then freed and then
669 incremented and the process repeated until the end of the
670 trajectory. Once the end is reached, the first block is freed then
671 incremented, until all frame pairs have been correlated in time.
672 This process is illustrated in
673 Fig.~\ref{oopseFig:dynamicPropsProcess}.
674
675 \begin{figure}
676 \centering
677 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
678 \caption[A representation of the block correlations in
679 \texttt{dynamicProps}]{This diagram illustrates block correlations
680 processing in \texttt{dynamicProps}. The shaded region represents
681 the self correlation of the block, and the open blocks are read one
682 at a time and the cross correlations between blocks are calculated.}
683 \label{oopseFig:dynamicPropsProcess}
684 \end{figure}
685
686 The options available for DynamicProps are as follows:
687 \begin{longtable}[c]{|EFG|}
688 \caption{DynamicProps Command-line Options}
689 \\ \hline
690 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
691 \endhead
692 \hline
693 \endfoot
694 -h& {\tt -{}-help} & Print help and exit \\
695 -V& {\tt -{}-version} & Print version and exit \\
696 -i& {\tt -{}-input} & input dump file \\
697 -o& {\tt -{}-output} & output file name \\
698 & {\tt -{}-sele1} & select first StuntDouble set \\
699 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
700 \hline
701 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
702 \hline
703 -r& {\tt -{}-rcorr} & compute mean square displacement \\
704 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
705 -d& {\tt -{}-dcorr} & compute dipole correlation function
706 \end{longtable}
707
708 \section{\label{appendixSection:tools}Other Useful Utilities}
709
710 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
711
712 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
713 which can be opened by other molecular dynamics viewers such as Jmol
714 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
715 as follows:
716
717
718 \begin{longtable}[c]{|EFG|}
719 \caption{Dump2XYZ Command-line Options}
720 \\ \hline
721 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
722 \endhead
723 \hline
724 \endfoot
725 -h & {\tt -{}-help} & Print help and exit \\
726 -V & {\tt -{}-version} & Print version and exit \\
727 -i & {\tt -{}-input} & input dump file \\
728 -o & {\tt -{}-output} & output file name \\
729 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
730 -w & {\tt -{}-water} & skip the the waters (default=off) \\
731 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
732 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
733 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
734 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
735 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
736 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
737 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
738 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
739 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
740 converted. \\
741 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
742 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
743 \end{longtable}
744
745 \subsection{\label{appendixSection:hydrodynamics}Hydro}
746
747 {\tt Hydro} can calculate resistance and diffusion tensors at the
748 center of resistance. Both tensors at the center of diffusion can
749 also be reported from the program, as well as the coordinates for
750 the beads which are used to approximate the arbitrary shapes. The
751 options available for Hydro are as follows:
752 \begin{longtable}[c]{|EFG|}
753 \caption{Hydrodynamics Command-line Options}
754 \\ \hline
755 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
756 \endhead
757 \hline
758 \endfoot
759 -h & {\tt -{}-help} & Print help and exit \\
760 -V & {\tt -{}-version} & Print version and exit \\
761 -i & {\tt -{}-input} & input dump file \\
762 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
763 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
764 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
765 \end{longtable}