ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2805 by tim, Tue Jun 6 20:33:28 2006 UTC vs.
Revision 2816 by tim, Wed Jun 7 19:51:57 2006 UTC

# Line 1 | Line 1
1   \appendix
2 < \chapter{\label{chapt:appendix}APPENDIX}
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4   Designing object-oriented software is hard, and designing reusable
5   object-oriented scientific software is even harder. Absence of
6   applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{wilson}. For instance, in the
8 < last 20 years , there are quite a few MD packages that were
7 > Scientific Computing community\cite{Wilson2006}. For instance, in
8 > the last 20 years , there are quite a few MD packages that were
9   developed to solve common MD problems and perform robust simulations
10   . However, many of the codes are legacy programs that are either
11   poorly organized or extremely complex. Usually, these packages were
# Line 14 | Line 14 | documents which is crucial to the maintenance and exte
14   coordination to enforce design and programming guidelines. Moreover,
15   most MD programs also suffer from missing design and implement
16   documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38  
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83   Design patterns are optimal solutions to commonly-occurring problems
84   in software design. Although originated as an architectural concept
85 < for buildings and towns by Christopher Alexander \cite{alexander},
86 < software patterns first became popular with the wide acceptance of
87 < the book, Design Patterns: Elements of Reusable Object-Oriented
88 < Software \cite{gamma94}. Patterns reflect the experience, knowledge
89 < and insights of developers who have successfully used these patterns
90 < in their own work. Patterns are reusable. They provide a ready-made
91 < solution that can be adapted to different problems as necessary.
92 < Pattern are expressive. they provide a common vocabulary of
93 < solutions that can express large solutions succinctly.
85 > for buildings and towns by Christopher Alexander
86 > \cite{Alexander1987}, software patterns first became popular with
87 > the wide acceptance of the book, Design Patterns: Elements of
88 > Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 > the experience, knowledge and insights of developers who have
90 > successfully used these patterns in their own work. Patterns are
91 > reusable. They provide a ready-made solution that can be adapted to
92 > different problems as necessary. Pattern are expressive. they
93 > provide a common vocabulary of solutions that can express large
94 > solutions succinctly.
95  
96   Patterns are usually described using a format that includes the
97   following information:
# Line 48 | Line 112 | the modern scientific software applications, such as J
112  
113   As one of the latest advanced techniques emerged from
114   object-oriented community, design patterns were applied in some of
115 < the modern scientific software applications, such as JMol, OOPSE
116 < \cite{Meineke05} and PROTOMOL \cite{Matthey05} \textit{etc}.
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121   The Singleton pattern ensures that only one instance of a class is
# Line 64 | Line 130 | that will be created.
130   subclasses can then override to specify the derived type of product
131   that will be created.
132  
67
133   \subsection{\label{appendixSection:visitorPattern}Visitor}
134   The purpose of the Visitor Pattern is to encapsulate an operation
135   that you want to perform on the elements of a data structure. In
# Line 72 | Line 137 | that you are operating on.
137   structure without the need of changing the classes of the elements
138   that you are operating on.
139  
75
76 \subsection{\label{appendixSection:templateMethod}Template Method}
77
78 \section{\label{appendixSection:analysisFramework}Analysis Framework}
79
140   \section{\label{appendixSection:concepts}Concepts}
141  
142   OOPSE manipulates both traditional atoms as well as some objects
# Line 84 | Line 144 | freedom.  Here is a diagram of the class heirarchy:
144   collections of atoms or atoms which have orientational degrees of
145   freedom.  Here is a diagram of the class heirarchy:
146  
147 < \begin{figure}
148 < \centering
149 < \includegraphics[width=3in]{heirarchy.eps}
150 < \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
151 < The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
152 < selection syntax allows the user to select any of the objects that
153 < are descended from a StuntDouble.} \label{oopseFig:heirarchy}
154 < \end{figure}
147 > %\begin{figure}
148 > %\centering
149 > %\includegraphics[width=3in]{heirarchy.eps}
150 > %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
151 > %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
152 > %selection syntax allows the user to select any of the objects that
153 > %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
154 > %\end{figure}
155  
156   \begin{itemize}
157   \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
# Line 102 | Line 162 | Every Molecule, Atom and DirectionalAtom in {\sc oopse
162   DirectionalAtom}s which behaves as a single unit.
163   \end{itemize}
164  
165 < Every Molecule, Atom and DirectionalAtom in {\sc oopse} have their
165 > Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
166   own names which are specified in the {\tt .md} file. In contrast,
167   RigidBodies are denoted by their membership and index inside a
168   particular molecule: [MoleculeName]\_RB\_[index] (the contents
# Line 113 | Line 173 | expression}}
173   \section{\label{appendixSection:syntax}Syntax of the Select Command}
174  
175   The most general form of the select command is: {\tt select {\it
176 < expression}}
176 > expression}}. This expression represents an arbitrary set of
177 > StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
178 > composed of either name expressions, index expressions, predefined
179 > sets, user-defined expressions, comparison operators, within
180 > expressions, or logical combinations of the above expression types.
181 > Expressions can be combined using parentheses and the Boolean
182 > operators.
183  
118 This expression represents an arbitrary set of StuntDoubles (Atoms
119 or RigidBodies) in {\sc oopse}. Expressions are composed of either
120 name expressions, index expressions, predefined sets, user-defined
121 expressions, comparison operators, within expressions, or logical
122 combinations of the above expression types. Expressions can be
123 combined using parentheses and the Boolean operators.
124
184   \subsection{\label{appendixSection:logical}Logical expressions}
185  
186   The logical operators allow complex queries to be constructed out of
# Line 203 | Line 262 | expression}}
262   Users can define arbitrary terms to represent groups of
263   StuntDoubles, and then use the define terms in select commands. The
264   general form for the define command is: {\bf define {\it term
265 < expression}}
265 > expression}}. Once defined, the user can specify such terms in
266 > boolean expressions
267  
208 Once defined, the user can specify such terms in boolean expressions
209
268   {\tt define SSDWATER SSD or SSD1 or SSDRF}
269  
270   {\tt select SSDWATER}
# Line 242 | Line 300 | atoms.
300   select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
301   atoms.
302  
245 \section{\label{appendixSection:tools}Tools which use the selection command}
303  
304 < \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
248 <
249 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
250 < be opened by other molecular dynamics viewers such as Jmol and VMD.
251 < The options available for Dump2XYZ are as follows:
252 <
253 <
254 < \begin{longtable}[c]{|EFG|}
255 < \caption{Dump2XYZ Command-line Options}
256 < \\ \hline
257 < {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
258 < \endhead
259 < \hline
260 < \endfoot
261 <  -h & {\tt -{}-help} &                        Print help and exit \\
262 <  -V & {\tt -{}-version} &                     Print version and exit \\
263 <  -i & {\tt -{}-input=filename}  &             input dump file \\
264 <  -o & {\tt -{}-output=filename} &             output file name \\
265 <  -n & {\tt -{}-frame=INT}   &                 print every n frame  (default=`1') \\
266 <  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
267 <  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
268 <  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
269 <  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
270 <  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
271 <  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
272 <     & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
273 <     & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
274 <     &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
275 <  -s & {\tt -{}-selection=selection script} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
276 < converted. \\
277 <     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
278 <     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
279 < \end{longtable}
304 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
305  
281
306   \subsection{\label{appendixSection:StaticProps}StaticProps}
307  
308   {\tt StaticProps} can compute properties which are averaged over
309   some or all of the configurations that are contained within a dump
310   file. The most common example of a static property that can be
311   computed is the pair distribution function between atoms of type $A$
312 < and other atoms of type $B$, $g_{AB}(r)$.  StaticProps can also be
313 < used to compute the density distributions of other molecules in a
314 < reference frame {\it fixed to the body-fixed reference frame} of a
315 < selected atom or rigid body.
312 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
313 > also be used to compute the density distributions of other molecules
314 > in a reference frame {\it fixed to the body-fixed reference frame}
315 > of a selected atom or rigid body.
316  
317   There are five seperate radial distribution functions availiable in
318   OOPSE. Since every radial distrbution function invlove the
# Line 344 | Line 368 | The options available for {\tt StaticProps} are as fol
368   their body-fixed frames.} \label{oopseFig:gofr}
369   \end{figure}
370  
371 + Due to the fact that the selected StuntDoubles from two selections
372 + may be overlapped, {\tt StaticProps} performs the calculation in
373 + three stages which are illustrated in
374 + Fig.~\ref{oopseFig:staticPropsProcess}.
375 +
376 + \begin{figure}
377 + \centering
378 + \includegraphics[width=\linewidth]{staticPropsProcess.eps}
379 + \caption[A representation of the three-stage correlations in
380 + \texttt{StaticProps}]{This diagram illustrates three-stage
381 + processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
382 + numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
383 + -{}-sele2} respectively, while $C$ is the number of stuntdobules
384 + appearing at both sets. The first stage($S_1-C$ and $S_2$) and
385 + second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
386 + the contrary, the third stage($C$ and $C$) are completely
387 + overlapping} \label{oopseFig:staticPropsProcess}
388 + \end{figure}
389 +
390   The options available for {\tt StaticProps} are as follows:
391   \begin{longtable}[c]{|EFG|}
392   \caption{StaticProps Command-line Options}
# Line 354 | Line 397 | The options available for {\tt StaticProps} are as fol
397   \endfoot
398    -h& {\tt -{}-help}                    &  Print help and exit \\
399    -V& {\tt -{}-version}                 &  Print version and exit \\
400 <  -i& {\tt -{}-input=filename}          &  input dump file \\
401 <  -o& {\tt -{}-output=filename}         &  output file name \\
402 <  -n& {\tt -{}-step=INT}                &  process every n frame  (default=`1') \\
403 <  -r& {\tt -{}-nrbins=INT}              &  number of bins for distance  (default=`100') \\
404 <  -a& {\tt -{}-nanglebins=INT}          &  number of bins for cos(angle)  (default= `50') \\
405 <  -l& {\tt -{}-length=DOUBLE}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
406 <    & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
407 <    & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
408 <    & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
409 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
410 <    & {\tt -{}-molname=STRING}           & molecule name \\
411 <    & {\tt -{}-begin=INT}                & begin internal index \\
412 <    & {\tt -{}-end=INT}                  & end internal index \\
400 >  -i& {\tt -{}-input}          &  input dump file \\
401 >  -o& {\tt -{}-output}         &  output file name \\
402 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
403 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
404 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
405 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
406 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
407 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
408 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
409 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
410 >    & {\tt -{}-molname}           & molecule name \\
411 >    & {\tt -{}-begin}                & begin internal index \\
412 >    & {\tt -{}-end}                  & end internal index \\
413   \hline
414   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
415   \hline
# Line 405 | Line 448 | The options available for DynamicProps are as follows:
448   different vectors).  The ability to use two selection scripts to
449   select different types of atoms is already present in the code.
450  
451 + For large simulations, the trajectory files can sometimes reach
452 + sizes in excess of several gigabytes. In order to effectively
453 + analyze that amount of data. In order to prevent a situation where
454 + the program runs out of memory due to large trajectories,
455 + \texttt{dynamicProps} will estimate the size of free memory at
456 + first, and determine the number of frames in each block, which
457 + allows the operating system to load two blocks of data
458 + simultaneously without swapping. Upon reading two blocks of the
459 + trajectory, \texttt{dynamicProps} will calculate the time
460 + correlation within the first block and the cross correlations
461 + between the two blocks. This second block is then freed and then
462 + incremented and the process repeated until the end of the
463 + trajectory. Once the end is reached, the first block is freed then
464 + incremented, until all frame pairs have been correlated in time.
465 + This process is illustrated in
466 + Fig.~\ref{oopseFig:dynamicPropsProcess}.
467 +
468 + \begin{figure}
469 + \centering
470 + \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
471 + \caption[A representation of the block correlations in
472 + \texttt{dynamicProps}]{This diagram illustrates block correlations
473 + processing in \texttt{dynamicProps}. The shaded region represents
474 + the self correlation of the block, and the open blocks are read one
475 + at a time and the cross correlations between blocks are calculated.}
476 + \label{oopseFig:dynamicPropsProcess}
477 + \end{figure}
478 +
479   The options available for DynamicProps are as follows:
480   \begin{longtable}[c]{|EFG|}
481   \caption{DynamicProps Command-line Options}
# Line 415 | Line 486 | The options available for DynamicProps are as follows:
486   \endfoot
487    -h& {\tt -{}-help}                   & Print help and exit \\
488    -V& {\tt -{}-version}                & Print version and exit \\
489 <  -i& {\tt -{}-input=filename}         & input dump file \\
490 <  -o& {\tt -{}-output=filename}        & output file name \\
491 <    & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
492 <    & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
489 >  -i& {\tt -{}-input}         & input dump file \\
490 >  -o& {\tt -{}-output}        & output file name \\
491 >    & {\tt -{}-sele1} & select first StuntDouble set \\
492 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
493   \hline
494   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
495   \hline
# Line 427 | Line 498 | The options available for DynamicProps are as follows:
498    -d& {\tt -{}-dcorr}                  & compute dipole correlation function
499   \end{longtable}
500  
501 < \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}
501 > \section{\label{appendixSection:tools}Other Useful Utilities}
502 >
503 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
504 >
505 > Dump2XYZ can transform an OOPSE dump file into a xyz file which can
506 > be opened by other molecular dynamics viewers such as Jmol and
507 > VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
508 > follows:
509 >
510 >
511 > \begin{longtable}[c]{|EFG|}
512 > \caption{Dump2XYZ Command-line Options}
513 > \\ \hline
514 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
515 > \endhead
516 > \hline
517 > \endfoot
518 >  -h & {\tt -{}-help} &                        Print help and exit \\
519 >  -V & {\tt -{}-version} &                     Print version and exit \\
520 >  -i & {\tt -{}-input}  &             input dump file \\
521 >  -o & {\tt -{}-output} &             output file name \\
522 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
523 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
524 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
525 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
526 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
527 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
528 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
529 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
530 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
531 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
532 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
533 > converted. \\
534 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
535 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
536 > \end{longtable}
537 >
538 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
539 > The options available for Hydro are as follows:
540 > \begin{longtable}[c]{|EFG|}
541 > \caption{Hydrodynamics Command-line Options}
542 > \\ \hline
543 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
544 > \endhead
545 > \hline
546 > \endfoot
547 >  -h & {\tt -{}-help} &                        Print help and exit \\
548 >  -V & {\tt -{}-version} &                     Print version and exit \\
549 >  -i & {\tt -{}-input}  &             input dump file \\
550 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
551 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
552 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
553 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines