ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2730 by tim, Mon Apr 24 18:49:32 2006 UTC vs.
Revision 2836 by tim, Fri Jun 9 02:12:42 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{chapt:appendix}APPENDIX}
1 > \appendix
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4   Designing object-oriented software is hard, and designing reusable
5   object-oriented scientific software is even harder. Absence of
6   applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{wilson}. For instance, in the
8 < last 20 years , there are quite a few MD packages that were
7 > Scientific Computing community\cite{Wilson2006}. For instance, in
8 > the last 20 years , there are quite a few MD packages that were
9   developed to solve common MD problems and perform robust simulations
10   . However, many of the codes are legacy programs that are either
11   poorly organized or extremely complex. Usually, these packages were
# Line 13 | Line 14 | documents which is crucial to the maintenance and exte
14   coordination to enforce design and programming guidelines. Moreover,
15   most MD programs also suffer from missing design and implement
16   documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38  
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83   Design patterns are optimal solutions to commonly-occurring problems
84   in software design. Although originated as an architectural concept
85 < for buildings and towns by Christopher Alexander \cite{alexander},
86 < software patterns first became popular with the wide acceptance of
87 < the book, Design Patterns: Elements of Reusable Object-Oriented
88 < Software \cite{gamma94}. Patterns reflect the experience, knowledge
89 < and insights of developers who have successfully used these patterns
90 < in their own work. Patterns are reusable. They provide a ready-made
91 < solution that can be adapted to different problems as necessary.
92 < Pattern are expressive. they provide a common vocabulary of
93 < solutions that can express large solutions succinctly.
85 > for buildings and towns by Christopher Alexander
86 > \cite{Alexander1987}, software patterns first became popular with
87 > the wide acceptance of the book, Design Patterns: Elements of
88 > Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 > the experience, knowledge and insights of developers who have
90 > successfully used these patterns in their own work. Patterns are
91 > reusable. They provide a ready-made solution that can be adapted to
92 > different problems as necessary. Pattern are expressive. they
93 > provide a common vocabulary of solutions that can express large
94 > solutions succinctly.
95  
96   Patterns are usually described using a format that includes the
97   following information:
# Line 47 | Line 112 | the modern scientific software applications, such as J
112  
113   As one of the latest advanced techniques emerged from
114   object-oriented community, design patterns were applied in some of
115 < the modern scientific software applications, such as JMol, OOPSE
116 < \cite{Meineke05} and PROTOMOL \cite{Matthey05} \textit{etc}.
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
54 The Singleton pattern ensures that only one instance of a class is
55 created. All objects that use an instance of that class use the same
56 instance.
121  
122 + The Singleton pattern not only provides a mechanism to restrict
123 + instantiation of a class to one object, but also provides a global
124 + point of access to the object. Currently implemented as a global
125 + variable, the logging utility which reports error and warning
126 + messages to the console in {\sc OOPSE} is a good candidate for
127 + applying the Singleton pattern to avoid the global namespace
128 + pollution.Although the singleton pattern can be implemented in
129 + various ways  to account for different aspects of the software
130 + designs, such as lifespan control \textit{etc}, we only use the
131 + static data approach in {\sc OOPSE}. IntegratorFactory class is
132 + declared as
133 +
134 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135 +
136 + class IntegratorFactory {
137 + public:
138 +  static IntegratorFactory*
139 +  getInstance();
140 + protected:
141 +  IntegratorFactory();
142 + private:
143 +  static IntegratorFactory* instance_;
144 + };
145 +
146 + \end{lstlisting}
147 +
148 + The corresponding implementation is
149 +
150 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151 +
152 + IntegratorFactory::instance_ = NULL;
153 +
154 + IntegratorFactory* getInstance() {
155 +  if (instance_ == NULL){
156 +    instance_ = new IntegratorFactory;
157 +  }
158 +  return instance_;
159 + }
160 +
161 + \end{lstlisting}
162 +
163 + Since constructor is declared as protected, a client can not
164 + instantiate IntegratorFactory directly. Moreover, since the member
165 + function getInstance serves as the only entry of access to
166 + IntegratorFactory, this approach fulfills the basic requirement, a
167 + single instance. Another consequence of this approach is the
168 + automatic destruction since static data are destroyed upon program
169 + termination.
170 +
171   \subsection{\label{appendixSection:factoryMethod}Factory Method}
59 The Factory Method pattern is a creational pattern which deals with
60 the problem of creating objects without specifying the exact class
61 of object that will be created. Factory Method solves this problem
62 by defining a separate method for creating the objects, which
63 subclasses can then override to specify the derived type of product
64 that will be created.
172  
173 + Categoried as a creational pattern, the Factory Method pattern deals
174 + with the problem of creating objects without specifying the exact
175 + class of object that will be created. Factory Method is typically
176 + implemented by delegating the creation operation to the subclasses.
177 + Parameterized Factory pattern where factory method (
178 + createIntegrator member function) creates products based on the
179 + identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180 + the identifier has been already registered, the factory method will
181 + invoke the corresponding creator (see List.~\ref{integratorCreator})
182 + which utilizes the modern C++ template technique to avoid excess
183 + subclassing.
184  
185 < \subsection{\label{appendixSection:visitorPattern}Visitor}
68 < The purpose of the Visitor Pattern is to encapsulate an operation
69 < that you want to perform on the elements of a data structure. In
70 < this way, you can change the operation being performed on a
71 < structure without the need of changing the classes of the elements
72 < that you are operating on.
185 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186  
187 + class IntegratorFactory {
188 + public:
189 +  typedef std::map<string, IntegratorCreator*> CreatorMapType;
190  
191 < \subsection{\label{appendixSection:templateMethod}Template Method}
191 >  bool registerIntegrator(IntegratorCreator* creator) {
192 >    return creatorMap_.insert(creator->getIdent(), creator).second;
193 >  }
194  
195 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
195 >  Integrator* createIntegrator(const string& id, SimInfo* info) {
196 >    Integrator* result = NULL;
197 >    CreatorMapType::iterator i = creatorMap_.find(id);
198 >    if (i != creatorMap_.end()) {
199 >      result = (i->second)->create(info);
200 >    }
201 >    return result;
202 >  }
203  
204 < \section{\label{appendixSection:concepts}Concepts}
204 > private:
205 >  CreatorMapType creatorMap_;
206 > };
207 > \end{lstlisting}
208  
209 < OOPSE manipulates both traditional atoms as well as some objects
82 < that {\it behave like atoms}.  These objects can be rigid
83 < collections of atoms or atoms which have orientational degrees of
84 < freedom.  Here is a diagram of the class heirarchy:
209 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210  
211 + class IntegratorCreator {
212 + public:
213 +    IntegratorCreator(const string& ident) : ident_(ident) {}
214 +
215 +    const string& getIdent() const { return ident_; }
216 +
217 +    virtual Integrator* create(SimInfo* info) const = 0;
218 +
219 + private:
220 +    string ident_;
221 + };
222 +
223 + template<class ConcreteIntegrator>
224 + class IntegratorBuilder : public IntegratorCreator {
225 + public:
226 +  IntegratorBuilder(const string& ident)
227 +                   : IntegratorCreator(ident) {}
228 +  virtual  Integrator* create(SimInfo* info) const {
229 +    return new ConcreteIntegrator(info);
230 +  }
231 + };
232 + \end{lstlisting}
233 +
234 + \subsection{\label{appendixSection:visitorPattern}Visitor}
235 +
236 + The visitor pattern is designed to decouple the data structure and
237 + algorithms used upon them by collecting related operation from
238 + element classes into other visitor classes, which is equivalent to
239 + adding virtual functions into a set of classes without modifying
240 + their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241 + structure of Visitor pattern which is used extensively in {\tt
242 + Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243 + distinct operations are performed on different StuntDoubles (See the
244 + class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245 + in List.~\ref{appendixScheme:element}). Since the hierarchies
246 + remains stable, it is easy to define a visit operation (see
247 + List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248 + Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249 + manages a priority visitor list and handles the execution of every
250 + visitor in the priority list on different StuntDoubles.
251 +
252   \begin{figure}
253   \centering
254 < \includegraphics[width=3in]{heirarchy.pdf}
255 < \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
256 < The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
91 < selection syntax allows the user to select any of the objects that
92 < are descended from a StuntDouble.} \label{oopseFig:heirarchy}
254 > \includegraphics[width=\linewidth]{visitor.eps}
255 > \caption[The UML class diagram of Visitor patten] {The UML class
256 > diagram of Visitor patten.} \label{appendixFig:visitorUML}
257   \end{figure}
258  
259 < \begin{itemize}
260 < \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
261 < integrators and minimizers.
262 < \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
263 < \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
264 < \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
265 < DirectionalAtom}s which behaves as a single unit.
266 < \end{itemize}
259 > %\begin{figure}
260 > %\centering
261 > %\includegraphics[width=\linewidth]{hierarchy.eps}
262 > %\caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263 > %the class hierarchy.
264 > %\begin{itemize}
265 > %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
266 > %integrators and minimizers.
267 > %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
268 > %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
269 > %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
270 > %DirectionalAtom}s which behaves as a single unit.
271 > %\end{itemize}
272 > %} \label{oopseFig:hierarchy}
273 > %\end{figure}
274  
275 < Every Molecule, Atom and DirectionalAtom in {\sc oopse} have their
276 < own names which are specified in the {\tt .md} file. In contrast,
277 < RigidBodies are denoted by their membership and index inside a
278 < particular molecule: [MoleculeName]\_RB\_[index] (the contents
279 < inside the brackets depend on the specifics of the simulation). The
280 < names of rigid bodies are generated automatically. For example, the
281 < name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
275 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
276 >
277 > class StuntDouble { public:
278 >  virtual void accept(BaseVisitor* v) = 0;
279 > };
280 >
281 > class Atom: public StuntDouble { public:
282 >  virtual void accept{BaseVisitor* v*} {
283 >    v->visit(this);
284 >  }
285 > };
286 >
287 > class DirectionalAtom: public Atom { public:
288 >  virtual void accept{BaseVisitor* v*} {
289 >    v->visit(this);
290 >  }
291 > };
292 >
293 > class RigidBody: public StuntDouble { public:
294 >  virtual void accept{BaseVisitor* v*} {
295 >    v->visit(this);
296 >  }
297 > };
298  
299 + \end{lstlisting}
300 +
301 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
302 +
303 + class BaseVisitor{
304 + public:
305 +  virtual void visit(Atom* atom);
306 +  virtual void visit(DirectionalAtom* datom);
307 +  virtual void visit(RigidBody* rb);
308 + };
309 +
310 + class BaseAtomVisitor:public BaseVisitor{ public:
311 +  virtual void visit(Atom* atom);
312 +  virtual void visit(DirectionalAtom* datom);
313 +  virtual void visit(RigidBody* rb);
314 + };
315 +
316 + class SSDAtomVisitor:public BaseAtomVisitor{ public:
317 +  virtual void visit(Atom* atom);
318 +  virtual void visit(DirectionalAtom* datom);
319 +  virtual void visit(RigidBody* rb);
320 + };
321 +
322 + class CompositeVisitor: public BaseVisitor {
323 + public:
324 +
325 +  typedef list<pair<BaseVisitor*, int> > VistorListType;
326 +  typedef VistorListType::iterator VisitorListIterator;
327 +  virtual void visit(Atom* atom) {
328 +    VisitorListIterator i;
329 +    BaseVisitor* curVisitor;
330 +    for(i = visitorList.begin();i != visitorList.end();++i) {
331 +      atom->accept(*i);
332 +    }
333 +  }
334 +
335 +  virtual void visit(DirectionalAtom* datom) {
336 +    VisitorListIterator i;
337 +    BaseVisitor* curVisitor;
338 +    for(i = visitorList.begin();i != visitorList.end();++i) {
339 +      atom->accept(*i);
340 +    }
341 +  }
342 +
343 +  virtual void visit(RigidBody* rb) {
344 +    VisitorListIterator i;
345 +    std::vector<Atom*> myAtoms;
346 +    std::vector<Atom*>::iterator ai;
347 +    myAtoms = rb->getAtoms();
348 +    for(i = visitorList.begin();i != visitorList.end();++i) {{
349 +      rb->accept(*i);
350 +      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
351 +        (*ai)->accept(*i);
352 +    }
353 +  }
354 +
355 +  void addVisitor(BaseVisitor* v, int priority);
356 +
357 +  protected:
358 +    VistorListType visitorList;
359 + };
360 +
361 + \end{lstlisting}
362 +
363 + \section{\label{appendixSection:concepts}Concepts}
364 +
365 + OOPSE manipulates both traditional atoms as well as some objects
366 + that {\it behave like atoms}.  These objects can be rigid
367 + collections of atoms or atoms which have orientational degrees of
368 + freedom.  A diagram of the class hierarchy is illustrated in
369 + Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
370 + DirectionalAtom in {\sc OOPSE} have their own names which are
371 + specified in the {\tt .md} file. In contrast, RigidBodies are
372 + denoted by their membership and index inside a particular molecule:
373 + [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
374 + on the specifics of the simulation). The names of rigid bodies are
375 + generated automatically. For example, the name of the first rigid
376 + body in a DMPC molecule is DMPC\_RB\_0.
377 +
378   \section{\label{appendixSection:syntax}Syntax of the Select Command}
379  
380   The most general form of the select command is: {\tt select {\it
381 < expression}}
381 > expression}}. This expression represents an arbitrary set of
382 > StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
383 > composed of either name expressions, index expressions, predefined
384 > sets, user-defined expressions, comparison operators, within
385 > expressions, or logical combinations of the above expression types.
386 > Expressions can be combined using parentheses and the Boolean
387 > operators.
388  
117 This expression represents an arbitrary set of StuntDoubles (Atoms
118 or RigidBodies) in {\sc oopse}. Expressions are composed of either
119 name expressions, index expressions, predefined sets, user-defined
120 expressions, comparison operators, within expressions, or logical
121 combinations of the above expression types. Expressions can be
122 combined using parentheses and the Boolean operators.
123
389   \subsection{\label{appendixSection:logical}Logical expressions}
390  
391   The logical operators allow complex queries to be constructed out of
# Line 143 | Line 408 | not & ``!''  \\
408   \subsection{\label{appendixSection:name}Name expressions}
409  
410   \begin{center}
411 < \begin{tabular}{|llp{3in}|}
411 > \begin{tabular}{|llp{2in}|}
412   \hline {\bf type of expression} & {\bf examples} & {\bf translation
413   of
414   examples} \\
# Line 202 | Line 467 | expression}}
467   Users can define arbitrary terms to represent groups of
468   StuntDoubles, and then use the define terms in select commands. The
469   general form for the define command is: {\bf define {\it term
470 < expression}}
470 > expression}}. Once defined, the user can specify such terms in
471 > boolean expressions
472  
207 Once defined, the user can specify such terms in boolean expressions
208
473   {\tt define SSDWATER SSD or SSD1 or SSDRF}
474  
475   {\tt select SSDWATER}
# Line 227 | Line 491 | wouldselect StuntDoubles which have mass greater than
491   \end{center}
492  
493   For example, the phrase {\tt select mass > 16.0 and charge < -2}
494 < wouldselect StuntDoubles which have mass greater than 16.0 and
494 > would select StuntDoubles which have mass greater than 16.0 and
495   charges less than -2.
496  
497   \subsection{\label{appendixSection:within}Within expressions}
# Line 241 | Line 505 | atoms.
505   select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
506   atoms.
507  
244 \section{\label{appendixSection:tools}Tools which use the selection command}
508  
509 < \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
509 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
510  
248 Dump2XYZ can transform an OOPSE dump file into a xyz file which can
249 be opened by other molecular dynamics viewers such as Jmol and VMD.
250 The options available for Dump2XYZ are as follows:
251
252
253 \begin{longtable}[c]{|EFG|}
254 \caption{Dump2XYZ Command-line Options}
255 \\ \hline
256 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
257 \endhead
258 \hline
259 \endfoot
260  -h & {\tt -{}-help} &                        Print help and exit \\
261  -V & {\tt -{}-version} &                     Print version and exit \\
262  -i & {\tt -{}-input=filename}  &             input dump file \\
263  -o & {\tt -{}-output=filename} &             output file name \\
264  -n & {\tt -{}-frame=INT}   &                 print every n frame  (default=`1') \\
265  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
266  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
267  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
268  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
269  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
270  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
271     & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
272     & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
273     &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
274  -s & {\tt -{}-selection=selection script} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
275 converted. \\
276     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
277     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
278 \end{longtable}
279
280
511   \subsection{\label{appendixSection:StaticProps}StaticProps}
512  
513   {\tt StaticProps} can compute properties which are averaged over
514   some or all of the configurations that are contained within a dump
515   file. The most common example of a static property that can be
516   computed is the pair distribution function between atoms of type $A$
517 < and other atoms of type $B$, $g_{AB}(r)$.  StaticProps can also be
518 < used to compute the density distributions of other molecules in a
519 < reference frame {\it fixed to the body-fixed reference frame} of a
520 < selected atom or rigid body.
517 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
518 > also be used to compute the density distributions of other molecules
519 > in a reference frame {\it fixed to the body-fixed reference frame}
520 > of a selected atom or rigid body.
521  
522   There are five seperate radial distribution functions availiable in
523   OOPSE. Since every radial distrbution function invlove the
# Line 336 | Line 566 | distribution functions are most easily seen in the fig
566  
567   \begin{figure}
568   \centering
569 < \includegraphics[width=3in]{definition.pdf}
569 > \includegraphics[width=3in]{definition.eps}
570   \caption[Definitions of the angles between directional objects]{ \\
571   Any two directional objects (DirectionalAtoms and RigidBodies) have
572   a set of two angles ($\theta$, and $\omega$) between the z-axes of
573   their body-fixed frames.} \label{oopseFig:gofr}
574   \end{figure}
575  
576 + Due to the fact that the selected StuntDoubles from two selections
577 + may be overlapped, {\tt StaticProps} performs the calculation in
578 + three stages which are illustrated in
579 + Fig.~\ref{oopseFig:staticPropsProcess}.
580 +
581 + \begin{figure}
582 + \centering
583 + \includegraphics[width=\linewidth]{staticPropsProcess.eps}
584 + \caption[A representation of the three-stage correlations in
585 + \texttt{StaticProps}]{This diagram illustrates three-stage
586 + processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
587 + numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
588 + -{}-sele2} respectively, while $C$ is the number of stuntdobules
589 + appearing at both sets. The first stage($S_1-C$ and $S_2$) and
590 + second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
591 + the contrary, the third stage($C$ and $C$) are completely
592 + overlapping} \label{oopseFig:staticPropsProcess}
593 + \end{figure}
594 +
595   The options available for {\tt StaticProps} are as follows:
596   \begin{longtable}[c]{|EFG|}
597   \caption{StaticProps Command-line Options}
# Line 353 | Line 602 | The options available for {\tt StaticProps} are as fol
602   \endfoot
603    -h& {\tt -{}-help}                    &  Print help and exit \\
604    -V& {\tt -{}-version}                 &  Print version and exit \\
605 <  -i& {\tt -{}-input=filename}          &  input dump file \\
606 <  -o& {\tt -{}-output=filename}         &  output file name \\
607 <  -n& {\tt -{}-step=INT}                &  process every n frame  (default=`1') \\
608 <  -r& {\tt -{}-nrbins=INT}              &  number of bins for distance  (default=`100') \\
609 <  -a& {\tt -{}-nanglebins=INT}          &  number of bins for cos(angle)  (default= `50') \\
610 <  -l& {\tt -{}-length=DOUBLE}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
611 <    & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
612 <    & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
613 <    & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
614 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
615 <    & {\tt -{}-molname=STRING}           & molecule name \\
616 <    & {\tt -{}-begin=INT}                & begin internal index \\
617 <    & {\tt -{}-end=INT}                  & end internal index \\
605 >  -i& {\tt -{}-input}          &  input dump file \\
606 >  -o& {\tt -{}-output}         &  output file name \\
607 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
608 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
609 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
610 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
611 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
612 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
613 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
614 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
615 >    & {\tt -{}-molname}           & molecule name \\
616 >    & {\tt -{}-begin}                & begin internal index \\
617 >    & {\tt -{}-end}                  & end internal index \\
618   \hline
619   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
620   \hline
# Line 404 | Line 653 | The options available for DynamicProps are as follows:
653   different vectors).  The ability to use two selection scripts to
654   select different types of atoms is already present in the code.
655  
656 + For large simulations, the trajectory files can sometimes reach
657 + sizes in excess of several gigabytes. In order to effectively
658 + analyze that amount of data. In order to prevent a situation where
659 + the program runs out of memory due to large trajectories,
660 + \texttt{dynamicProps} will estimate the size of free memory at
661 + first, and determine the number of frames in each block, which
662 + allows the operating system to load two blocks of data
663 + simultaneously without swapping. Upon reading two blocks of the
664 + trajectory, \texttt{dynamicProps} will calculate the time
665 + correlation within the first block and the cross correlations
666 + between the two blocks. This second block is then freed and then
667 + incremented and the process repeated until the end of the
668 + trajectory. Once the end is reached, the first block is freed then
669 + incremented, until all frame pairs have been correlated in time.
670 + This process is illustrated in
671 + Fig.~\ref{oopseFig:dynamicPropsProcess}.
672 +
673 + \begin{figure}
674 + \centering
675 + \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
676 + \caption[A representation of the block correlations in
677 + \texttt{dynamicProps}]{This diagram illustrates block correlations
678 + processing in \texttt{dynamicProps}. The shaded region represents
679 + the self correlation of the block, and the open blocks are read one
680 + at a time and the cross correlations between blocks are calculated.}
681 + \label{oopseFig:dynamicPropsProcess}
682 + \end{figure}
683 +
684   The options available for DynamicProps are as follows:
685   \begin{longtable}[c]{|EFG|}
686   \caption{DynamicProps Command-line Options}
# Line 414 | Line 691 | The options available for DynamicProps are as follows:
691   \endfoot
692    -h& {\tt -{}-help}                   & Print help and exit \\
693    -V& {\tt -{}-version}                & Print version and exit \\
694 <  -i& {\tt -{}-input=filename}         & input dump file \\
695 <  -o& {\tt -{}-output=filename}        & output file name \\
696 <    & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
697 <    & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
694 >  -i& {\tt -{}-input}         & input dump file \\
695 >  -o& {\tt -{}-output}        & output file name \\
696 >    & {\tt -{}-sele1} & select first StuntDouble set \\
697 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
698   \hline
699   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
700   \hline
# Line 426 | Line 703 | The options available for DynamicProps are as follows:
703    -d& {\tt -{}-dcorr}                  & compute dipole correlation function
704   \end{longtable}
705  
706 < \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}
706 > \section{\label{appendixSection:tools}Other Useful Utilities}
707 >
708 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
709 >
710 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
711 > which can be opened by other molecular dynamics viewers such as Jmol
712 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
713 > as follows:
714 >
715 >
716 > \begin{longtable}[c]{|EFG|}
717 > \caption{Dump2XYZ Command-line Options}
718 > \\ \hline
719 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
720 > \endhead
721 > \hline
722 > \endfoot
723 >  -h & {\tt -{}-help} &                        Print help and exit \\
724 >  -V & {\tt -{}-version} &                     Print version and exit \\
725 >  -i & {\tt -{}-input}  &             input dump file \\
726 >  -o & {\tt -{}-output} &             output file name \\
727 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
728 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
729 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
730 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
731 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
732 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
733 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
734 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
735 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
736 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
737 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
738 > converted. \\
739 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
740 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
741 > \end{longtable}
742 >
743 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
744 >
745 > {\tt Hydro} can calculate resistance and diffusion tensors at the
746 > center of resistance. Both tensors at the center of diffusion can
747 > also be reported from the program, as well as the coordinates for
748 > the beads which are used to approximate the arbitrary shapes. The
749 > options available for Hydro are as follows:
750 > \begin{longtable}[c]{|EFG|}
751 > \caption{Hydrodynamics Command-line Options}
752 > \\ \hline
753 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
754 > \endhead
755 > \hline
756 > \endfoot
757 >  -h & {\tt -{}-help} &                        Print help and exit \\
758 >  -V & {\tt -{}-version} &                     Print version and exit \\
759 >  -i & {\tt -{}-input}  &             input dump file \\
760 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
761 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
762 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
763 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines