ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2815 by tim, Wed Jun 7 18:34:05 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{chapt:appendix}APPENDIX}
1 > \appendix
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4 + Designing object-oriented software is hard, and designing reusable
5 + object-oriented scientific software is even harder. Absence of
6 + applying modern software development practices is the bottleneck of
7 + Scientific Computing community\cite{Wilson2006}. For instance, in
8 + the last 20 years , there are quite a few MD packages that were
9 + developed to solve common MD problems and perform robust simulations
10 + . However, many of the codes are legacy programs that are either
11 + poorly organized or extremely complex. Usually, these packages were
12 + contributed by scientists without official computer science
13 + training. The development of most MD applications are lack of strong
14 + coordination to enforce design and programming guidelines. Moreover,
15 + most MD programs also suffer from missing design and implement
16 + documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38 +
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83 + Design patterns are optimal solutions to commonly-occurring problems
84 + in software design. Although originated as an architectural concept
85 + for buildings and towns by Christopher Alexander
86 + \cite{Alexander1987}, software patterns first became popular with
87 + the wide acceptance of the book, Design Patterns: Elements of
88 + Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 + the experience, knowledge and insights of developers who have
90 + successfully used these patterns in their own work. Patterns are
91 + reusable. They provide a ready-made solution that can be adapted to
92 + different problems as necessary. Pattern are expressive. they
93 + provide a common vocabulary of solutions that can express large
94 + solutions succinctly.
95  
96 < \subsection{\label{appendixSection:visitorPattern}Visitor Pattern}
96 > Patterns are usually described using a format that includes the
97 > following information:
98 > \begin{enumerate}
99 >  \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 >  discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 >  in the literature. In this case it is common practice to document these nicknames or synonyms under
102 >  the heading of \emph{Aliases} or \emph{Also Known As}.
103 >  \item The \emph{motivation} or \emph{context} that this pattern applies
104 >  to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 >  \item The \emph{solution} to the problem that the pattern
106 >  addresses. It describes how to construct the necessary work products. The description may include
107 >  pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 >  collaborations, to show how the problem is solved.
109 >  \item The \emph{consequences} of using the given solution to solve a
110 >  problem, both positive and negative.
111 > \end{enumerate}
112  
113 < \subsection{\label{appendixSection:templatePattern}Template Pattern}
113 > As one of the latest advanced techniques emerged from
114 > object-oriented community, design patterns were applied in some of
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120 < \subsection{\label{appendixSection:factoryPattern}Factory Pattern}
120 > \subsection{\label{appendixSection:singleton}Singleton}
121 > The Singleton pattern ensures that only one instance of a class is
122 > created. All objects that use an instance of that class use the same
123 > instance.
124  
125 < \section{\label{appendixSection:hierarchy}Hierarchy}
125 > \subsection{\label{appendixSection:factoryMethod}Factory Method}
126 > The Factory Method pattern is a creational pattern which deals with
127 > the problem of creating objects without specifying the exact class
128 > of object that will be created. Factory Method solves this problem
129 > by defining a separate method for creating the objects, which
130 > subclasses can then override to specify the derived type of product
131 > that will be created.
132  
133 < \section{\label{appendixSection:selectionSyntax}Selection Syntax}
133 > \subsection{\label{appendixSection:visitorPattern}Visitor}
134 > The purpose of the Visitor Pattern is to encapsulate an operation
135 > that you want to perform on the elements of a data structure. In
136 > this way, you can change the operation being performed on a
137 > structure without the need of changing the classes of the elements
138 > that you are operating on.
139  
140 < \section{\label{appendixSection:hydrodynamics}Hydrodynamics}
140 > \section{\label{appendixSection:concepts}Concepts}
141  
142 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
142 > OOPSE manipulates both traditional atoms as well as some objects
143 > that {\it behave like atoms}.  These objects can be rigid
144 > collections of atoms or atoms which have orientational degrees of
145 > freedom.  Here is a diagram of the class heirarchy:
146  
147 < \subsection{\label{appendixSection:staticProps}Factory Properties}
147 > %\begin{figure}
148 > %\centering
149 > %\includegraphics[width=3in]{heirarchy.eps}
150 > %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
151 > %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
152 > %selection syntax allows the user to select any of the objects that
153 > %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
154 > %\end{figure}
155  
156 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
156 > \begin{itemize}
157 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
158 > integrators and minimizers.
159 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
160 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
161 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
162 > DirectionalAtom}s which behaves as a single unit.
163 > \end{itemize}
164 >
165 > Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
166 > own names which are specified in the {\tt .md} file. In contrast,
167 > RigidBodies are denoted by their membership and index inside a
168 > particular molecule: [MoleculeName]\_RB\_[index] (the contents
169 > inside the brackets depend on the specifics of the simulation). The
170 > names of rigid bodies are generated automatically. For example, the
171 > name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
172 >
173 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
174 >
175 > The most general form of the select command is: {\tt select {\it
176 > expression}}. This expression represents an arbitrary set of
177 > StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
178 > composed of either name expressions, index expressions, predefined
179 > sets, user-defined expressions, comparison operators, within
180 > expressions, or logical combinations of the above expression types.
181 > Expressions can be combined using parentheses and the Boolean
182 > operators.
183 >
184 > \subsection{\label{appendixSection:logical}Logical expressions}
185 >
186 > The logical operators allow complex queries to be constructed out of
187 > simpler ones using the standard boolean connectives {\bf and}, {\bf
188 > or}, {\bf not}. Parentheses can be used to alter the precedence of
189 > the operators.
190 >
191 > \begin{center}
192 > \begin{tabular}{|ll|}
193 > \hline
194 > {\bf logical operator} & {\bf equivalent operator}  \\
195 > \hline
196 > and & ``\&'', ``\&\&'' \\
197 > or & ``$|$'', ``$||$'', ``,'' \\
198 > not & ``!''  \\
199 > \hline
200 > \end{tabular}
201 > \end{center}
202 >
203 > \subsection{\label{appendixSection:name}Name expressions}
204 >
205 > \begin{center}
206 > \begin{tabular}{|llp{2in}|}
207 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
208 > of
209 > examples} \\
210 > \hline expression without ``.'' & select DMPC & select all
211 > StuntDoubles
212 > belonging to all DMPC molecules \\
213 > & select C* & select all atoms which have atom types beginning with C
214 > \\
215 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
216 > only select the rigid bodies, and not the atoms belonging to them). \\
217 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
218 > O\_TIP3P
219 > atoms belonging to TIP3P molecules \\
220 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
221 > the first
222 > RigidBody in each DMPC molecule \\
223 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
224 > molecule \\
225 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
226 > select all atoms
227 > belonging to all rigid bodies within all DMPC molecules \\
228 > \hline
229 > \end{tabular}
230 > \end{center}
231 >
232 > \subsection{\label{appendixSection:index}Index expressions}
233 >
234 > \begin{center}
235 > \begin{tabular}{|lp{4in}|}
236 > \hline
237 > {\bf examples} & {\bf translation of examples} \\
238 > \hline
239 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
240 > select 20 to 30 & select all of the StuntDoubles belonging to
241 > molecules which have global indices between 20 (inclusive) and 30
242 > (exclusive) \\
243 > \hline
244 > \end{tabular}
245 > \end{center}
246 >
247 > \subsection{\label{appendixSection:predefined}Predefined sets}
248 >
249 > \begin{center}
250 > \begin{tabular}{|ll|}
251 > \hline
252 > {\bf keyword} & {\bf description} \\
253 > \hline
254 > all & select all StuntDoubles \\
255 > none & select none of the StuntDoubles \\
256 > \hline
257 > \end{tabular}
258 > \end{center}
259 >
260 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
261 >
262 > Users can define arbitrary terms to represent groups of
263 > StuntDoubles, and then use the define terms in select commands. The
264 > general form for the define command is: {\bf define {\it term
265 > expression}}. Once defined, the user can specify such terms in
266 > boolean expressions
267 >
268 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
269 >
270 > {\tt select SSDWATER}
271 >
272 > \subsection{\label{appendixSection:comparison}Comparison expressions}
273 >
274 > StuntDoubles can be selected by using comparision operators on their
275 > properties. The general form for the comparison command is: a
276 > property name, followed by a comparision operator and then a number.
277 >
278 > \begin{center}
279 > \begin{tabular}{|l|l|}
280 > \hline
281 > {\bf property} & mass, charge \\
282 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
283 > ``$<=$'', ``$!=$'' \\
284 > \hline
285 > \end{tabular}
286 > \end{center}
287 >
288 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
289 > would select StuntDoubles which have mass greater than 16.0 and
290 > charges less than -2.
291 >
292 > \subsection{\label{appendixSection:within}Within expressions}
293 >
294 > The ``within'' keyword allows the user to select all StuntDoubles
295 > within the specified distance (in Angstroms) from a selection,
296 > including the selected atom itself. The general form for within
297 > selection is: {\tt select within(distance, expression)}
298 >
299 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
300 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
301 > atoms.
302 >
303 >
304 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
305 >
306 > \subsection{\label{appendixSection:StaticProps}StaticProps}
307 >
308 > {\tt StaticProps} can compute properties which are averaged over
309 > some or all of the configurations that are contained within a dump
310 > file. The most common example of a static property that can be
311 > computed is the pair distribution function between atoms of type $A$
312 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
313 > also be used to compute the density distributions of other molecules
314 > in a reference frame {\it fixed to the body-fixed reference frame}
315 > of a selected atom or rigid body.
316 >
317 > There are five seperate radial distribution functions availiable in
318 > OOPSE. Since every radial distrbution function invlove the
319 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
320 > -{}-sele2} must be specified to tell StaticProps which bodies to
321 > include in the calculation.
322 >
323 > \begin{description}
324 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
325 > \begin{equation*}
326 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
327 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
328 > \end{equation*}
329 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
330 > function. The angle is defined by the intermolecular vector
331 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
332 > \begin{equation*}
333 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
334 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
335 > \theta_{ij} - \cos \theta)\rangle
336 > \end{equation*}
337 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
338 > function. The angle is defined by the $z$-axes of the two
339 > DirectionalAtoms A and B.
340 > \begin{equation*}
341 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
342 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
343 > \omega_{ij} - \cos \omega)\rangle
344 > \end{equation*}
345 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
346 > space $\theta, \omega$ defined by the two angles mentioned above.
347 > \begin{equation*}
348 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
349 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
350 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
351 > \omega)\rangle
352 > \end{equation*}
353 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
354 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
355 > and {\tt -{}-refsele} must be given to define A's internal
356 > coordinate set as the reference frame for the calculation.
357 > \end{description}
358 >
359 > The vectors (and angles) associated with these angular pair
360 > distribution functions are most easily seen in the figure below:
361 >
362 > \begin{figure}
363 > \centering
364 > \includegraphics[width=3in]{definition.eps}
365 > \caption[Definitions of the angles between directional objects]{ \\
366 > Any two directional objects (DirectionalAtoms and RigidBodies) have
367 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
368 > their body-fixed frames.} \label{oopseFig:gofr}
369 > \end{figure}
370 >
371 > Due to the fact that the selected StuntDoubles from two selections
372 > may be overlapped, {\tt StaticProps} performs the calculation in
373 > three stages which are illustrated in
374 > Fig.~\ref{oopseFig:staticPropsProcess}.
375 >
376 > \begin{figure}
377 > \centering
378 > \includegraphics[width=\linewidth]{staticPropsProcess.eps}
379 > \caption[A representation of the three-stage correlations in
380 > \texttt{StaticProps}]{Three-stage processing in
381 > \texttt{StaticProps}. $S_1$ and $S_2$ are the numbers of selected
382 > stuntdobules from {\tt -{}-sele1} and {\tt -{}-sele2} respectively,
383 > while $C$ is the number of stuntdobules appearing at both sets. The
384 > first stage($S_1-C$ and $S_2$) and second stages ($S_1$ and $S_2-C$)
385 > are completely non-overlapping. On the contrary, the third stage($C$
386 > and $C$) are completely overlapping}
387 > \label{oopseFig:staticPropsProcess}
388 > \end{figure}
389 >
390 > The options available for {\tt StaticProps} are as follows:
391 > \begin{longtable}[c]{|EFG|}
392 > \caption{StaticProps Command-line Options}
393 > \\ \hline
394 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
395 > \endhead
396 > \hline
397 > \endfoot
398 >  -h& {\tt -{}-help}                    &  Print help and exit \\
399 >  -V& {\tt -{}-version}                 &  Print version and exit \\
400 >  -i& {\tt -{}-input}          &  input dump file \\
401 >  -o& {\tt -{}-output}         &  output file name \\
402 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
403 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
404 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
405 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
406 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
407 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
408 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
409 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
410 >    & {\tt -{}-molname}           & molecule name \\
411 >    & {\tt -{}-begin}                & begin internal index \\
412 >    & {\tt -{}-end}                  & end internal index \\
413 > \hline
414 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
415 > \hline
416 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
417 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
418 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
419 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
420 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
421 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
422 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
423 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
424 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
425 > \end{longtable}
426 >
427 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
428 >
429 > {\tt DynamicProps} computes time correlation functions from the
430 > configurations stored in a dump file.  Typical examples of time
431 > correlation functions are the mean square displacement and the
432 > velocity autocorrelation functions.   Once again, the selection
433 > syntax can be used to specify the StuntDoubles that will be used for
434 > the calculation.  A general time correlation function can be thought
435 > of as:
436 > \begin{equation}
437 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
438 > \end{equation}
439 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
440 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
441 > vector property associated with an atom of type $B$ at a different
442 > time $t^{\prime}$.  In most autocorrelation functions, the vector
443 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
444 > $B$) are identical, and the three calculations built in to {\tt
445 > DynamicProps} make these assumptions.  It is possible, however, to
446 > make simple modifications to the {\tt DynamicProps} code to allow
447 > the use of {\it cross} time correlation functions (i.e. with
448 > different vectors).  The ability to use two selection scripts to
449 > select different types of atoms is already present in the code.
450 >
451 > For large simulations, the trajectory files can sometimes reach
452 > sizes in excess of several gigabytes. In order to effectively
453 > analyze that amount of data. In order to prevent a situation where
454 > the program runs out of memory due to large trajectories,
455 > \texttt{dynamicProps} will estimate the size of free memory at
456 > first, and determine the number of frames in each block, which
457 > allows the operating system to load two blocks of data
458 > simultaneously without swapping. Upon reading two blocks of the
459 > trajectory, \texttt{dynamicProps} will calculate the time
460 > correlation within the first block and the cross correlations
461 > between the two blocks. This second block is then freed and then
462 > incremented and the process repeated until the end of the
463 > trajectory. Once the end is reached, the first block is freed then
464 > incremented, until all frame pairs have been correlated in time.
465 >
466 > The options available for DynamicProps are as follows:
467 > \begin{longtable}[c]{|EFG|}
468 > \caption{DynamicProps Command-line Options}
469 > \\ \hline
470 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
471 > \endhead
472 > \hline
473 > \endfoot
474 >  -h& {\tt -{}-help}                   & Print help and exit \\
475 >  -V& {\tt -{}-version}                & Print version and exit \\
476 >  -i& {\tt -{}-input}         & input dump file \\
477 >  -o& {\tt -{}-output}        & output file name \\
478 >    & {\tt -{}-sele1} & select first StuntDouble set \\
479 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
480 > \hline
481 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
482 > \hline
483 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
484 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
485 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
486 > \end{longtable}
487 >
488 > \section{\label{appendixSection:tools}Other Useful Utilities}
489 >
490 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
491 >
492 > Dump2XYZ can transform an OOPSE dump file into a xyz file which can
493 > be opened by other molecular dynamics viewers such as Jmol and
494 > VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
495 > follows:
496 >
497 >
498 > \begin{longtable}[c]{|EFG|}
499 > \caption{Dump2XYZ Command-line Options}
500 > \\ \hline
501 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
502 > \endhead
503 > \hline
504 > \endfoot
505 >  -h & {\tt -{}-help} &                        Print help and exit \\
506 >  -V & {\tt -{}-version} &                     Print version and exit \\
507 >  -i & {\tt -{}-input}  &             input dump file \\
508 >  -o & {\tt -{}-output} &             output file name \\
509 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
510 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
511 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
512 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
513 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
514 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
515 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
516 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
517 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
518 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
519 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
520 > converted. \\
521 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
522 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
523 > \end{longtable}
524 >
525 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
526 > The options available for Hydro are as follows:
527 > \begin{longtable}[c]{|EFG|}
528 > \caption{Hydrodynamics Command-line Options}
529 > \\ \hline
530 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
531 > \endhead
532 > \hline
533 > \endfoot
534 >  -h & {\tt -{}-help} &                        Print help and exit \\
535 >  -V & {\tt -{}-version} &                     Print version and exit \\
536 >  -i & {\tt -{}-input}  &             input dump file \\
537 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
538 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
539 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
540 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines