ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2815 by tim, Wed Jun 7 18:34:05 2006 UTC vs.
Revision 2824 by tim, Thu Jun 8 15:44:14 2006 UTC

# Line 118 | Line 118 | The Singleton pattern ensures that only one instance o
118   OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121 < The Singleton pattern ensures that only one instance of a class is
122 < created. All objects that use an instance of that class use the same
123 < instance.
121 > The Singleton pattern not only provides a mechanism to restrict
122 > instantiation of a class to one object, but also provides a global
123 > point of access to the object. Currently implemented as a global
124 > variable, the logging utility which reports error and warning
125 > messages to the console in {\sc OOPSE} is a good candidate for
126 > applying the Singleton pattern to avoid the global namespace
127 > pollution.Although the singleton pattern can be implemented in
128 > various ways  to account for different aspects of the software
129 > designs, such as lifespan control \textit{etc}, we only use the
130 > static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 > is declared as
132 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133  
134 +  class IntegratorFactory {
135 +    public:
136 +      static IntegratorFactory* getInstance();
137 +    protected:
138 +      IntegratorFactory();
139 +    private:
140 +      static IntegratorFactory* instance_;
141 +  };
142 + \end{lstlisting}
143 + The corresponding implementation is
144 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145 +
146 + IntegratorFactory::instance_ = NULL;
147 +
148 + IntegratorFactory* getInstance() {
149 +  if (instance_ == NULL){
150 +    instance_ = new IntegratorFactory;
151 +  }
152 +  return instance_;
153 + }
154 + \end{lstlisting}
155 + Since constructor is declared as {\tt protected}, a client can not
156 + instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 + member function {\tt getInstance} serves as the only entry of access
158 + to {\tt IntegratorFactory}, this approach fulfills the basic
159 + requirement, a single instance. Another consequence of this approach
160 + is the automatic destruction since static data are destroyed upon
161 + program termination.
162 +
163   \subsection{\label{appendixSection:factoryMethod}Factory Method}
164 < The Factory Method pattern is a creational pattern which deals with
165 < the problem of creating objects without specifying the exact class
166 < of object that will be created. Factory Method solves this problem
167 < by defining a separate method for creating the objects, which
168 < subclasses can then override to specify the derived type of product
169 < that will be created.
164 >
165 > Categoried as a creational pattern, the Factory Method pattern deals
166 > with the problem of creating objects without specifying the exact
167 > class of object that will be created. Factory Method is typically
168 > implemented by delegating the creation operation to the subclasses.
169 >
170 > Registers a creator with a type identifier. Looks up the type
171 > identifier in the internal map. If it is found, it invokes the
172 > corresponding creator for the type identifier and returns its
173 > result.
174 > \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
175 >  class IntegratorCreator;
176 >  class IntegratorFactory {
177 >    public:
178 >      typedef std::map<string, IntegratorCreator*> CreatorMapType;
179 >
180 >      bool registerIntegrator(IntegratorCreator* creator);
181 >
182 >      Integrator* createIntegrator(const string& id, SimInfo* info);
183 >
184 >    private:
185 >      CreatorMapType creatorMap_;
186 >  };
187 > \end{lstlisting}
188 >
189 > \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
190 >  bool IntegratorFactory::unregisterIntegrator(const string& id) {
191 >    return creatorMap_.erase(id) == 1;
192 >  }
193 >
194 >  Integrator*
195 >  IntegratorFactory::createIntegrator(const string& id, SimInfo* info) {
196 >    CreatorMapType::iterator i = creatorMap_.find(id);
197 >    if (i != creatorMap_.end()) {
198 >      //invoke functor to create object
199 >      return (i->second)->create(info);
200 >    } else {
201 >      return NULL;
202 >    }
203 >  }
204 > \end{lstlisting}
205 >
206 > \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
207 >
208 >  class IntegratorCreator {
209 >  public:
210 >    IntegratorCreator(const string& ident) : ident_(ident) {}
211 >
212 >    const string& getIdent() const { return ident_; }
213 >
214 >    virtual Integrator* create(SimInfo* info) const = 0;
215 >
216 >  private:
217 >    string ident_;
218 >  };
219 >
220 >  template<class ConcreteIntegrator>
221 >  class IntegratorBuilder : public IntegratorCreator {
222 >  public:
223 >    IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
224 >    virtual  Integrator* create(SimInfo* info) const {
225 >      return new ConcreteIntegrator(info);
226 >    }
227 >  };
228 > \end{lstlisting}
229  
230   \subsection{\label{appendixSection:visitorPattern}Visitor}
231 +
232   The purpose of the Visitor Pattern is to encapsulate an operation
233 < that you want to perform on the elements of a data structure. In
234 < this way, you can change the operation being performed on a
235 < structure without the need of changing the classes of the elements
236 < that you are operating on.
233 > that you want to perform on the elements. The operation being
234 > performed on a structure can be switched without changing the
235 > interfaces  of the elements. In other words, one can add virtual
236 > functions into a set of classes without modifying their interfaces.
237 > The UML class diagram of Visitor patten is shown in
238 > Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
239 > Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
240 > extensively.
241  
242 + \begin{figure}
243 + \centering
244 + \includegraphics[width=\linewidth]{architecture.eps}
245 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
246 + of {\sc OOPSE}} \label{appendixFig:visitorUML}
247 + \end{figure}
248 +
249 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
250 +  class BaseVisitor{
251 +    public:
252 +      virtual void visit(Atom* atom);
253 +      virtual void visit(DirectionalAtom* datom);
254 +      virtual void visit(RigidBody* rb);
255 +  };
256 + \end{lstlisting}
257 +
258 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
259 +  class StuntDouble {
260 +    public:
261 +      virtual void accept(BaseVisitor* v) = 0;
262 +  };
263 +
264 +  class Atom: public StuntDouble {
265 +    public:
266 +      virtual void accept{BaseVisitor* v*} {v->visit(this);}
267 +  };
268 +
269 +  class DirectionalAtom: public Atom {
270 +    public:
271 +      virtual void accept{BaseVisitor* v*} {v->visit(this);}
272 +  };
273 +
274 +  class RigidBody: public StuntDouble {
275 +    public:
276 +      virtual void accept{BaseVisitor* v*} {v->visit(this);}
277 +  };
278 +
279 + \end{lstlisting}
280   \section{\label{appendixSection:concepts}Concepts}
281  
282   OOPSE manipulates both traditional atoms as well as some objects
# Line 377 | Line 517 | Fig.~\ref{oopseFig:staticPropsProcess}.
517   \centering
518   \includegraphics[width=\linewidth]{staticPropsProcess.eps}
519   \caption[A representation of the three-stage correlations in
520 < \texttt{StaticProps}]{Three-stage processing in
521 < \texttt{StaticProps}. $S_1$ and $S_2$ are the numbers of selected
522 < stuntdobules from {\tt -{}-sele1} and {\tt -{}-sele2} respectively,
523 < while $C$ is the number of stuntdobules appearing at both sets. The
524 < first stage($S_1-C$ and $S_2$) and second stages ($S_1$ and $S_2-C$)
525 < are completely non-overlapping. On the contrary, the third stage($C$
526 < and $C$) are completely overlapping}
527 < \label{oopseFig:staticPropsProcess}
520 > \texttt{StaticProps}]{This diagram illustrates three-stage
521 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
522 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
523 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
524 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
525 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
526 > the contrary, the third stage($C$ and $C$) are completely
527 > overlapping} \label{oopseFig:staticPropsProcess}
528   \end{figure}
529  
530   The options available for {\tt StaticProps} are as follows:
# Line 462 | Line 602 | incremented, until all frame pairs have been correlate
602   incremented and the process repeated until the end of the
603   trajectory. Once the end is reached, the first block is freed then
604   incremented, until all frame pairs have been correlated in time.
605 + This process is illustrated in
606 + Fig.~\ref{oopseFig:dynamicPropsProcess}.
607  
608 + \begin{figure}
609 + \centering
610 + \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
611 + \caption[A representation of the block correlations in
612 + \texttt{dynamicProps}]{This diagram illustrates block correlations
613 + processing in \texttt{dynamicProps}. The shaded region represents
614 + the self correlation of the block, and the open blocks are read one
615 + at a time and the cross correlations between blocks are calculated.}
616 + \label{oopseFig:dynamicPropsProcess}
617 + \end{figure}
618 +
619   The options available for DynamicProps are as follows:
620   \begin{longtable}[c]{|EFG|}
621   \caption{DynamicProps Command-line Options}
# Line 489 | Line 642 | Dump2XYZ can transform an OOPSE dump file into a xyz f
642  
643   \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
644  
645 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
646 < be opened by other molecular dynamics viewers such as Jmol and
647 < VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
648 < follows:
645 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
646 > which can be opened by other molecular dynamics viewers such as Jmol
647 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
648 > as follows:
649  
650  
651   \begin{longtable}[c]{|EFG|}
# Line 523 | Line 676 | The options available for Hydro are as follows:
676   \end{longtable}
677  
678   \subsection{\label{appendixSection:hydrodynamics}Hydro}
679 < The options available for Hydro are as follows:
679 >
680 > {\tt Hydro} can calculate resistance and diffusion tensors at the
681 > center of resistance. Both tensors at the center of diffusion can
682 > also be reported from the program, as well as the coordinates for
683 > the beads which are used to approximate the arbitrary shapes. The
684 > options available for Hydro are as follows:
685   \begin{longtable}[c]{|EFG|}
686   \caption{Hydrodynamics Command-line Options}
687   \\ \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines