ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2816 by tim, Wed Jun 7 19:51:57 2006 UTC vs.
Revision 2832 by tim, Thu Jun 8 21:09:22 2006 UTC

# Line 118 | Line 118 | The Singleton pattern ensures that only one instance o
118   OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121 < The Singleton pattern ensures that only one instance of a class is
122 < created. All objects that use an instance of that class use the same
123 < instance.
121 > The Singleton pattern not only provides a mechanism to restrict
122 > instantiation of a class to one object, but also provides a global
123 > point of access to the object. Currently implemented as a global
124 > variable, the logging utility which reports error and warning
125 > messages to the console in {\sc OOPSE} is a good candidate for
126 > applying the Singleton pattern to avoid the global namespace
127 > pollution.Although the singleton pattern can be implemented in
128 > various ways  to account for different aspects of the software
129 > designs, such as lifespan control \textit{etc}, we only use the
130 > static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 > is declared as
132 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133  
134 + class IntegratorFactory {
135 + public:
136 +  static IntegratorFactory*
137 +  getInstance();
138 + protected:
139 +  IntegratorFactory();
140 + private:
141 +  static IntegratorFactory* instance_;
142 + };
143 +
144 + \end{lstlisting}
145 + The corresponding implementation is
146 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
147 +
148 + IntegratorFactory::instance_ = NULL;
149 +
150 + IntegratorFactory* getInstance() {
151 +  if (instance_ == NULL){
152 +    instance_ = new IntegratorFactory;
153 +  }
154 +  return instance_;
155 + }
156 +
157 + \end{lstlisting}
158 + Since constructor is declared as {\tt protected}, a client can not
159 + instantiate {\tt IntegratorFactory} directly. Moreover, since the
160 + member function {\tt getInstance} serves as the only entry of access
161 + to {\tt IntegratorFactory}, this approach fulfills the basic
162 + requirement, a single instance. Another consequence of this approach
163 + is the automatic destruction since static data are destroyed upon
164 + program termination.
165 +
166   \subsection{\label{appendixSection:factoryMethod}Factory Method}
126 The Factory Method pattern is a creational pattern which deals with
127 the problem of creating objects without specifying the exact class
128 of object that will be created. Factory Method solves this problem
129 by defining a separate method for creating the objects, which
130 subclasses can then override to specify the derived type of product
131 that will be created.
167  
168 + Categoried as a creational pattern, the Factory Method pattern deals
169 + with the problem of creating objects without specifying the exact
170 + class of object that will be created. Factory Method is typically
171 + implemented by delegating the creation operation to the subclasses.
172 +
173 + Registers a creator with a type identifier. Looks up the type
174 + identifier in the internal map. If it is found, it invokes the
175 + corresponding creator for the type identifier and returns its
176 + result.
177 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
178 +
179 + class IntegratorFactory {
180 + public:
181 +  typedef std::map<string, IntegratorCreator*> CreatorMapType;
182 +
183 +  bool registerIntegrator(IntegratorCreator* creator) {
184 +    return creatorMap_.insert(creator->getIdent(), creator).second;
185 +  }
186 +
187 +  Integrator* createIntegrator(const string& id, SimInfo* info) {
188 +    Integrator* result = NULL;
189 +    CreatorMapType::iterator i = creatorMap_.find(id);
190 +    if (i != creatorMap_.end()) {
191 +      result = (i->second)->create(info);
192 +    }
193 +    return result;
194 +  }
195 +
196 + private:
197 +  CreatorMapType creatorMap_;
198 + };
199 + \end{lstlisting}
200 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)]Souce code of creator classes.},label={appendixScheme:integratorCreator}]
201 +
202 + class IntegratorCreator {
203 + public:
204 +    IntegratorCreator(const string& ident) : ident_(ident) {}
205 +
206 +    const string& getIdent() const { return ident_; }
207 +
208 +    virtual Integrator* create(SimInfo* info) const = 0;
209 +
210 + private:
211 +    string ident_;
212 + };
213 +
214 + template<class ConcreteIntegrator> class IntegratorBuilder : public
215 + IntegratorCreator {
216 + public:
217 +  IntegratorBuilder(const string& ident)
218 +                     : IntegratorCreator(ident) {}
219 +  virtual  Integrator* create(SimInfo* info) const {
220 +    return new ConcreteIntegrator(info);
221 +  }
222 + };
223 + \end{lstlisting}
224 +
225   \subsection{\label{appendixSection:visitorPattern}Visitor}
226 +
227   The purpose of the Visitor Pattern is to encapsulate an operation
228 < that you want to perform on the elements of a data structure. In
229 < this way, you can change the operation being performed on a
230 < structure without the need of changing the classes of the elements
231 < that you are operating on.
228 > that you want to perform on the elements. The operation being
229 > performed on a structure can be switched without changing the
230 > interfaces  of the elements. In other words, one can add virtual
231 > functions into a set of classes without modifying their interfaces.
232 > The UML class diagram of Visitor patten is shown in
233 > Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
234 > Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
235 > extensively.
236 >
237 > \begin{figure}
238 > \centering
239 > \includegraphics[width=\linewidth]{visitor.eps}
240 > \caption[The architecture of {\sc OOPSE}] {Overview of the structure
241 > of {\sc OOPSE}} \label{appendixFig:visitorUML}
242 > \end{figure}
243 >
244 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
245 >
246 > class BaseVisitor{
247 > public:
248 >  virtual void visit(Atom* atom);
249 >  virtual void visit(DirectionalAtom* datom);
250 >  virtual void visit(RigidBody* rb);
251 > };
252 >
253 > \end{lstlisting}
254 >
255 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
256 >
257 > class StuntDouble {
258 > public:
259 >  virtual void accept(BaseVisitor* v) = 0;
260 > };
261 >
262 > class Atom: public StuntDouble {
263 > public:
264 >  virtual void accept{BaseVisitor* v*} {
265 >    v->visit(this);
266 >  }
267 > };
268 >
269 > class DirectionalAtom: public Atom {
270 > public:
271 >  virtual void accept{BaseVisitor* v*} {
272 >    v->visit(this);
273 >  }
274 > };
275 >
276 > class RigidBody: public StuntDouble {
277 > public:
278 >  virtual void accept{BaseVisitor* v*} {
279 >    v->visit(this);
280 >  }
281 > };
282  
283 + \end{lstlisting}
284 +
285   \section{\label{appendixSection:concepts}Concepts}
286  
287   OOPSE manipulates both traditional atoms as well as some objects
288   that {\it behave like atoms}.  These objects can be rigid
289   collections of atoms or atoms which have orientational degrees of
290 < freedom.  Here is a diagram of the class heirarchy:
291 <
292 < %\begin{figure}
293 < %\centering
294 < %\includegraphics[width=3in]{heirarchy.eps}
295 < %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
296 < %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
297 < %selection syntax allows the user to select any of the objects that
298 < %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
299 < %\end{figure}
300 <
290 > freedom.  A diagram of the class heirarchy is illustrated in
291 > Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
292 > DirectionalAtom in {\sc OOPSE} have their own names which are
293 > specified in the {\tt .md} file. In contrast, RigidBodies are
294 > denoted by their membership and index inside a particular molecule:
295 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
296 > on the specifics of the simulation). The names of rigid bodies are
297 > generated automatically. For example, the name of the first rigid
298 > body in a DMPC molecule is DMPC\_RB\_0.
299 > \begin{figure}
300 > \centering
301 > \includegraphics[width=\linewidth]{heirarchy.eps}
302 > \caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of
303 > the class heirarchy.
304   \begin{itemize}
305   \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
306   integrators and minimizers.
# Line 161 | Line 309 | DirectionalAtom}s which behaves as a single unit.
309   \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
310   DirectionalAtom}s which behaves as a single unit.
311   \end{itemize}
312 <
313 < Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
166 < own names which are specified in the {\tt .md} file. In contrast,
167 < RigidBodies are denoted by their membership and index inside a
168 < particular molecule: [MoleculeName]\_RB\_[index] (the contents
169 < inside the brackets depend on the specifics of the simulation). The
170 < names of rigid bodies are generated automatically. For example, the
171 < name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
312 > } \label{oopseFig:heirarchy}
313 > \end{figure}
314  
315   \section{\label{appendixSection:syntax}Syntax of the Select Command}
316  
# Line 502 | Line 644 | Dump2XYZ can transform an OOPSE dump file into a xyz f
644  
645   \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
646  
647 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
648 < be opened by other molecular dynamics viewers such as Jmol and
649 < VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
650 < follows:
647 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
648 > which can be opened by other molecular dynamics viewers such as Jmol
649 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
650 > as follows:
651  
652  
653   \begin{longtable}[c]{|EFG|}
# Line 536 | Line 678 | The options available for Hydro are as follows:
678   \end{longtable}
679  
680   \subsection{\label{appendixSection:hydrodynamics}Hydro}
681 < The options available for Hydro are as follows:
681 >
682 > {\tt Hydro} can calculate resistance and diffusion tensors at the
683 > center of resistance. Both tensors at the center of diffusion can
684 > also be reported from the program, as well as the coordinates for
685 > the beads which are used to approximate the arbitrary shapes. The
686 > options available for Hydro are as follows:
687   \begin{longtable}[c]{|EFG|}
688   \caption{Hydrodynamics Command-line Options}
689   \\ \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines