ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2821 by tim, Thu Jun 8 06:39:37 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{chapt:appendix}APPENDIX}
1 > \appendix
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4 + Designing object-oriented software is hard, and designing reusable
5 + object-oriented scientific software is even harder. Absence of
6 + applying modern software development practices is the bottleneck of
7 + Scientific Computing community\cite{Wilson2006}. For instance, in
8 + the last 20 years , there are quite a few MD packages that were
9 + developed to solve common MD problems and perform robust simulations
10 + . However, many of the codes are legacy programs that are either
11 + poorly organized or extremely complex. Usually, these packages were
12 + contributed by scientists without official computer science
13 + training. The development of most MD applications are lack of strong
14 + coordination to enforce design and programming guidelines. Moreover,
15 + most MD programs also suffer from missing design and implement
16 + documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38 +
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83 + Design patterns are optimal solutions to commonly-occurring problems
84 + in software design. Although originated as an architectural concept
85 + for buildings and towns by Christopher Alexander
86 + \cite{Alexander1987}, software patterns first became popular with
87 + the wide acceptance of the book, Design Patterns: Elements of
88 + Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 + the experience, knowledge and insights of developers who have
90 + successfully used these patterns in their own work. Patterns are
91 + reusable. They provide a ready-made solution that can be adapted to
92 + different problems as necessary. Pattern are expressive. they
93 + provide a common vocabulary of solutions that can express large
94 + solutions succinctly.
95  
96 < \subsection{\label{appendixSection:visitorPattern}Visitor Pattern}
96 > Patterns are usually described using a format that includes the
97 > following information:
98 > \begin{enumerate}
99 >  \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 >  discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 >  in the literature. In this case it is common practice to document these nicknames or synonyms under
102 >  the heading of \emph{Aliases} or \emph{Also Known As}.
103 >  \item The \emph{motivation} or \emph{context} that this pattern applies
104 >  to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 >  \item The \emph{solution} to the problem that the pattern
106 >  addresses. It describes how to construct the necessary work products. The description may include
107 >  pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 >  collaborations, to show how the problem is solved.
109 >  \item The \emph{consequences} of using the given solution to solve a
110 >  problem, both positive and negative.
111 > \end{enumerate}
112  
113 < \subsection{\label{appendixSection:templatePattern}Template Pattern}
113 > As one of the latest advanced techniques emerged from
114 > object-oriented community, design patterns were applied in some of
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120 < \subsection{\label{appendixSection:factoryPattern}Factory Pattern}
120 > \subsection{\label{appendixSection:singleton}Singleton}
121 > The Singleton pattern not only provides a mechanism to restrict
122 > instantiation of a class to one object, but also provides a global
123 > point of access to the object. Currently implemented as a global
124 > variable, the logging utility which reports error and warning
125 > messages to the console in {\sc OOPSE} is a good candidate for
126 > applying the Singleton pattern to avoid the global namespace
127 > pollution.Although the singleton pattern can be implemented in
128 > various ways  to account for different aspects of the software
129 > designs, such as lifespan control \textit{etc}, we only use the
130 > static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 > is declared as
132 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133  
134 < \section{\label{appendixSection:hierarchy}Hierarchy}
134 >  class IntegratorFactory {
135 >    public:
136 >      static IntegratorFactory* getInstance();
137 >    protected:
138 >      IntegratorFactory();
139 >    private:
140 >      static IntegratorFactory* instance_;
141 >  };
142 > \end{lstlisting}
143 > The corresponding implementation is
144 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145  
146 < \section{\label{appendixSection:selectionSyntax}Selection Syntax}
146 > IntegratorFactory::instance_ = NULL;
147  
148 < \section{\label{appendixSection:hydrodynamics}Hydrodynamics}
148 > IntegratorFactory* getInstance() {
149 >  if (instance_ == NULL){
150 >    instance_ = new IntegratorFactory;
151 >  }
152 >  return instance_;
153 > }
154 > \end{lstlisting}
155 > Since constructor is declared as {\tt protected}, a client can not
156 > instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 > member function {\tt getInstance} serves as the only entry of access
158 > to {\tt IntegratorFactory}, this approach fulfills the basic
159 > requirement, a single instance. Another consequence of this approach
160 > is the automatic destruction since static data are destroyed upon
161 > program termination.
162  
163 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
163 > \subsection{\label{appendixSection:factoryMethod}Factory Method}
164  
165 < \subsection{\label{appendixSection:staticProps}Factory Properties}
165 > Categoried as a creational pattern, the Factory Method pattern deals
166 > with the problem of creating objects without specifying the exact
167 > class of object that will be created. Factory Method is typically
168 > implemented by delegating the creation operation to the subclasses.
169 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
170 >  class IntegratorCreator;
171 >  class IntegratorFactory {
172 >    public:
173 >      typedef std::map<std::string, IntegratorCreator*> CreatorMapType;
174  
175 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
175 >      /**
176 >       * Registers a creator with a type identifier
177 >       * @return true if registration is successful, otherwise return false
178 >       * @id the identification of the concrete object
179 >       * @creator the object responsible to create the concrete object
180 >       */
181 >      bool registerIntegrator(IntegratorCreator* creator);
182 >
183 >      /**
184 >       * Looks up the type identifier in the internal map. If it is found, it invokes the
185 >       * corresponding creator for the type identifier and returns its result.
186 >       * @return a pointer of the concrete object, return NULL if no creator is registed for
187 >       * creating this concrete object
188 >       * @param id the identification of the concrete object
189 >       */
190 >      Integrator* createIntegrator(const std::string& id, SimInfo* info);
191 >
192 >    private:
193 >      CreatorMapType creatorMap_;
194 >  };
195 > \end{lstlisting}
196 >
197 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
198 >  bool IntegratorFactory::unregisterIntegrator(const std::string& id) {
199 >    return creatorMap_.erase(id) == 1;
200 >  }
201 >
202 >  Integrator* IntegratorFactory::createIntegrator(const std::string& id, SimInfo* info) {
203 >    CreatorMapType::iterator i = creatorMap_.find(id);
204 >    if (i != creatorMap_.end()) {
205 >      //invoke functor to create object
206 >      return (i->second)->create(info);
207 >    } else {
208 >      return NULL;
209 >    }
210 >  }
211 > \end{lstlisting}
212 >
213 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
214 >
215 >  class IntegratorCreator {
216 >  public:
217 >    IntegratorCreator(const std::string& ident) : ident_(ident) {}
218 >    virtual ~IntegratorCreator() {}
219 >    const std::string& getIdent() const { return ident_; }
220 >
221 >    virtual Integrator* create(SimInfo* info) const = 0;
222 >
223 >  private:
224 >    std::string ident_;
225 >  };
226 >
227 >  template<class ConcreteIntegrator>
228 >  class IntegratorBuilder : public IntegratorCreator {
229 >  public:
230 >    IntegratorBuilder(const std::string& ident) : IntegratorCreator(ident) {}
231 >    virtual  Integrator* create(SimInfo* info) const {return new ConcreteIntegrator(info);}
232 >  };
233 > \end{lstlisting}
234 >
235 > \subsection{\label{appendixSection:visitorPattern}Visitor}
236 >
237 > The purpose of the Visitor Pattern is to encapsulate an operation
238 > that you want to perform on the elements of a data structure. In
239 > this way, you can change the operation being performed on a
240 > structure without the need of changing the class heirarchy of the
241 > elements that you are operating on.
242 >
243 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
244 >  class BaseVisitor{
245 >    public:
246 >      virtual void visit(Atom* atom);
247 >      virtual void visit(DirectionalAtom* datom);
248 >      virtual void visit(RigidBody* rb);
249 >  };
250 > \end{lstlisting}
251 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
252 >  class StuntDouble {
253 >    public:
254 >      virtual void accept(BaseVisitor* v) = 0;
255 >  };
256 >
257 >  class Atom: public StuntDouble {
258 >    public:
259 >      virtual void accept{BaseVisitor* v*} {v->visit(this);}
260 >  };
261 >
262 >  class DirectionalAtom: public Atom {
263 >    public:
264 >      virtual void accept{BaseVisitor* v*} {v->visit(this);}
265 >  };
266 >
267 >  class RigidBody: public StuntDouble {
268 >    public:
269 >      virtual void accept{BaseVisitor* v*} {v->visit(this);}
270 >  };
271 >
272 > \end{lstlisting}
273 > \section{\label{appendixSection:concepts}Concepts}
274 >
275 > OOPSE manipulates both traditional atoms as well as some objects
276 > that {\it behave like atoms}.  These objects can be rigid
277 > collections of atoms or atoms which have orientational degrees of
278 > freedom.  Here is a diagram of the class heirarchy:
279 >
280 > %\begin{figure}
281 > %\centering
282 > %\includegraphics[width=3in]{heirarchy.eps}
283 > %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
284 > %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
285 > %selection syntax allows the user to select any of the objects that
286 > %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
287 > %\end{figure}
288 >
289 > \begin{itemize}
290 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
291 > integrators and minimizers.
292 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
293 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
294 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
295 > DirectionalAtom}s which behaves as a single unit.
296 > \end{itemize}
297 >
298 > Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
299 > own names which are specified in the {\tt .md} file. In contrast,
300 > RigidBodies are denoted by their membership and index inside a
301 > particular molecule: [MoleculeName]\_RB\_[index] (the contents
302 > inside the brackets depend on the specifics of the simulation). The
303 > names of rigid bodies are generated automatically. For example, the
304 > name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
305 >
306 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
307 >
308 > The most general form of the select command is: {\tt select {\it
309 > expression}}. This expression represents an arbitrary set of
310 > StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
311 > composed of either name expressions, index expressions, predefined
312 > sets, user-defined expressions, comparison operators, within
313 > expressions, or logical combinations of the above expression types.
314 > Expressions can be combined using parentheses and the Boolean
315 > operators.
316 >
317 > \subsection{\label{appendixSection:logical}Logical expressions}
318 >
319 > The logical operators allow complex queries to be constructed out of
320 > simpler ones using the standard boolean connectives {\bf and}, {\bf
321 > or}, {\bf not}. Parentheses can be used to alter the precedence of
322 > the operators.
323 >
324 > \begin{center}
325 > \begin{tabular}{|ll|}
326 > \hline
327 > {\bf logical operator} & {\bf equivalent operator}  \\
328 > \hline
329 > and & ``\&'', ``\&\&'' \\
330 > or & ``$|$'', ``$||$'', ``,'' \\
331 > not & ``!''  \\
332 > \hline
333 > \end{tabular}
334 > \end{center}
335 >
336 > \subsection{\label{appendixSection:name}Name expressions}
337 >
338 > \begin{center}
339 > \begin{tabular}{|llp{2in}|}
340 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
341 > of
342 > examples} \\
343 > \hline expression without ``.'' & select DMPC & select all
344 > StuntDoubles
345 > belonging to all DMPC molecules \\
346 > & select C* & select all atoms which have atom types beginning with C
347 > \\
348 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
349 > only select the rigid bodies, and not the atoms belonging to them). \\
350 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
351 > O\_TIP3P
352 > atoms belonging to TIP3P molecules \\
353 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
354 > the first
355 > RigidBody in each DMPC molecule \\
356 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
357 > molecule \\
358 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
359 > select all atoms
360 > belonging to all rigid bodies within all DMPC molecules \\
361 > \hline
362 > \end{tabular}
363 > \end{center}
364 >
365 > \subsection{\label{appendixSection:index}Index expressions}
366 >
367 > \begin{center}
368 > \begin{tabular}{|lp{4in}|}
369 > \hline
370 > {\bf examples} & {\bf translation of examples} \\
371 > \hline
372 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
373 > select 20 to 30 & select all of the StuntDoubles belonging to
374 > molecules which have global indices between 20 (inclusive) and 30
375 > (exclusive) \\
376 > \hline
377 > \end{tabular}
378 > \end{center}
379 >
380 > \subsection{\label{appendixSection:predefined}Predefined sets}
381 >
382 > \begin{center}
383 > \begin{tabular}{|ll|}
384 > \hline
385 > {\bf keyword} & {\bf description} \\
386 > \hline
387 > all & select all StuntDoubles \\
388 > none & select none of the StuntDoubles \\
389 > \hline
390 > \end{tabular}
391 > \end{center}
392 >
393 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
394 >
395 > Users can define arbitrary terms to represent groups of
396 > StuntDoubles, and then use the define terms in select commands. The
397 > general form for the define command is: {\bf define {\it term
398 > expression}}. Once defined, the user can specify such terms in
399 > boolean expressions
400 >
401 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
402 >
403 > {\tt select SSDWATER}
404 >
405 > \subsection{\label{appendixSection:comparison}Comparison expressions}
406 >
407 > StuntDoubles can be selected by using comparision operators on their
408 > properties. The general form for the comparison command is: a
409 > property name, followed by a comparision operator and then a number.
410 >
411 > \begin{center}
412 > \begin{tabular}{|l|l|}
413 > \hline
414 > {\bf property} & mass, charge \\
415 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
416 > ``$<=$'', ``$!=$'' \\
417 > \hline
418 > \end{tabular}
419 > \end{center}
420 >
421 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
422 > would select StuntDoubles which have mass greater than 16.0 and
423 > charges less than -2.
424 >
425 > \subsection{\label{appendixSection:within}Within expressions}
426 >
427 > The ``within'' keyword allows the user to select all StuntDoubles
428 > within the specified distance (in Angstroms) from a selection,
429 > including the selected atom itself. The general form for within
430 > selection is: {\tt select within(distance, expression)}
431 >
432 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
433 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
434 > atoms.
435 >
436 >
437 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
438 >
439 > \subsection{\label{appendixSection:StaticProps}StaticProps}
440 >
441 > {\tt StaticProps} can compute properties which are averaged over
442 > some or all of the configurations that are contained within a dump
443 > file. The most common example of a static property that can be
444 > computed is the pair distribution function between atoms of type $A$
445 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
446 > also be used to compute the density distributions of other molecules
447 > in a reference frame {\it fixed to the body-fixed reference frame}
448 > of a selected atom or rigid body.
449 >
450 > There are five seperate radial distribution functions availiable in
451 > OOPSE. Since every radial distrbution function invlove the
452 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
453 > -{}-sele2} must be specified to tell StaticProps which bodies to
454 > include in the calculation.
455 >
456 > \begin{description}
457 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
458 > \begin{equation*}
459 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
460 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
461 > \end{equation*}
462 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
463 > function. The angle is defined by the intermolecular vector
464 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
465 > \begin{equation*}
466 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
467 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
468 > \theta_{ij} - \cos \theta)\rangle
469 > \end{equation*}
470 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
471 > function. The angle is defined by the $z$-axes of the two
472 > DirectionalAtoms A and B.
473 > \begin{equation*}
474 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
475 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
476 > \omega_{ij} - \cos \omega)\rangle
477 > \end{equation*}
478 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
479 > space $\theta, \omega$ defined by the two angles mentioned above.
480 > \begin{equation*}
481 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
482 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
483 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
484 > \omega)\rangle
485 > \end{equation*}
486 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
487 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
488 > and {\tt -{}-refsele} must be given to define A's internal
489 > coordinate set as the reference frame for the calculation.
490 > \end{description}
491 >
492 > The vectors (and angles) associated with these angular pair
493 > distribution functions are most easily seen in the figure below:
494 >
495 > \begin{figure}
496 > \centering
497 > \includegraphics[width=3in]{definition.eps}
498 > \caption[Definitions of the angles between directional objects]{ \\
499 > Any two directional objects (DirectionalAtoms and RigidBodies) have
500 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
501 > their body-fixed frames.} \label{oopseFig:gofr}
502 > \end{figure}
503 >
504 > Due to the fact that the selected StuntDoubles from two selections
505 > may be overlapped, {\tt StaticProps} performs the calculation in
506 > three stages which are illustrated in
507 > Fig.~\ref{oopseFig:staticPropsProcess}.
508 >
509 > \begin{figure}
510 > \centering
511 > \includegraphics[width=\linewidth]{staticPropsProcess.eps}
512 > \caption[A representation of the three-stage correlations in
513 > \texttt{StaticProps}]{This diagram illustrates three-stage
514 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
515 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
516 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
517 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
518 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
519 > the contrary, the third stage($C$ and $C$) are completely
520 > overlapping} \label{oopseFig:staticPropsProcess}
521 > \end{figure}
522 >
523 > The options available for {\tt StaticProps} are as follows:
524 > \begin{longtable}[c]{|EFG|}
525 > \caption{StaticProps Command-line Options}
526 > \\ \hline
527 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
528 > \endhead
529 > \hline
530 > \endfoot
531 >  -h& {\tt -{}-help}                    &  Print help and exit \\
532 >  -V& {\tt -{}-version}                 &  Print version and exit \\
533 >  -i& {\tt -{}-input}          &  input dump file \\
534 >  -o& {\tt -{}-output}         &  output file name \\
535 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
536 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
537 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
538 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
539 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
540 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
541 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
542 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
543 >    & {\tt -{}-molname}           & molecule name \\
544 >    & {\tt -{}-begin}                & begin internal index \\
545 >    & {\tt -{}-end}                  & end internal index \\
546 > \hline
547 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
548 > \hline
549 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
550 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
551 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
552 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
553 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
554 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
555 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
556 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
557 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
558 > \end{longtable}
559 >
560 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
561 >
562 > {\tt DynamicProps} computes time correlation functions from the
563 > configurations stored in a dump file.  Typical examples of time
564 > correlation functions are the mean square displacement and the
565 > velocity autocorrelation functions.   Once again, the selection
566 > syntax can be used to specify the StuntDoubles that will be used for
567 > the calculation.  A general time correlation function can be thought
568 > of as:
569 > \begin{equation}
570 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
571 > \end{equation}
572 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
573 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
574 > vector property associated with an atom of type $B$ at a different
575 > time $t^{\prime}$.  In most autocorrelation functions, the vector
576 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
577 > $B$) are identical, and the three calculations built in to {\tt
578 > DynamicProps} make these assumptions.  It is possible, however, to
579 > make simple modifications to the {\tt DynamicProps} code to allow
580 > the use of {\it cross} time correlation functions (i.e. with
581 > different vectors).  The ability to use two selection scripts to
582 > select different types of atoms is already present in the code.
583 >
584 > For large simulations, the trajectory files can sometimes reach
585 > sizes in excess of several gigabytes. In order to effectively
586 > analyze that amount of data. In order to prevent a situation where
587 > the program runs out of memory due to large trajectories,
588 > \texttt{dynamicProps} will estimate the size of free memory at
589 > first, and determine the number of frames in each block, which
590 > allows the operating system to load two blocks of data
591 > simultaneously without swapping. Upon reading two blocks of the
592 > trajectory, \texttt{dynamicProps} will calculate the time
593 > correlation within the first block and the cross correlations
594 > between the two blocks. This second block is then freed and then
595 > incremented and the process repeated until the end of the
596 > trajectory. Once the end is reached, the first block is freed then
597 > incremented, until all frame pairs have been correlated in time.
598 > This process is illustrated in
599 > Fig.~\ref{oopseFig:dynamicPropsProcess}.
600 >
601 > \begin{figure}
602 > \centering
603 > \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
604 > \caption[A representation of the block correlations in
605 > \texttt{dynamicProps}]{This diagram illustrates block correlations
606 > processing in \texttt{dynamicProps}. The shaded region represents
607 > the self correlation of the block, and the open blocks are read one
608 > at a time and the cross correlations between blocks are calculated.}
609 > \label{oopseFig:dynamicPropsProcess}
610 > \end{figure}
611 >
612 > The options available for DynamicProps are as follows:
613 > \begin{longtable}[c]{|EFG|}
614 > \caption{DynamicProps Command-line Options}
615 > \\ \hline
616 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
617 > \endhead
618 > \hline
619 > \endfoot
620 >  -h& {\tt -{}-help}                   & Print help and exit \\
621 >  -V& {\tt -{}-version}                & Print version and exit \\
622 >  -i& {\tt -{}-input}         & input dump file \\
623 >  -o& {\tt -{}-output}        & output file name \\
624 >    & {\tt -{}-sele1} & select first StuntDouble set \\
625 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
626 > \hline
627 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
628 > \hline
629 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
630 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
631 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
632 > \end{longtable}
633 >
634 > \section{\label{appendixSection:tools}Other Useful Utilities}
635 >
636 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
637 >
638 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
639 > which can be opened by other molecular dynamics viewers such as Jmol
640 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
641 > as follows:
642 >
643 >
644 > \begin{longtable}[c]{|EFG|}
645 > \caption{Dump2XYZ Command-line Options}
646 > \\ \hline
647 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
648 > \endhead
649 > \hline
650 > \endfoot
651 >  -h & {\tt -{}-help} &                        Print help and exit \\
652 >  -V & {\tt -{}-version} &                     Print version and exit \\
653 >  -i & {\tt -{}-input}  &             input dump file \\
654 >  -o & {\tt -{}-output} &             output file name \\
655 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
656 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
657 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
658 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
659 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
660 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
661 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
662 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
663 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
664 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
665 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
666 > converted. \\
667 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
668 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
669 > \end{longtable}
670 >
671 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
672 >
673 > {\tt Hydro} can calculate resistance and diffusion tensors at the
674 > center of resistance. Both tensors at the center of diffusion can
675 > also be reported from the program, as well as the coordinates for
676 > the beads which are used to approximate the arbitrary shapes. The
677 > options available for Hydro are as follows:
678 > \begin{longtable}[c]{|EFG|}
679 > \caption{Hydrodynamics Command-line Options}
680 > \\ \hline
681 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
682 > \endhead
683 > \hline
684 > \endfoot
685 >  -h & {\tt -{}-help} &                        Print help and exit \\
686 >  -V & {\tt -{}-version} &                     Print version and exit \\
687 >  -i & {\tt -{}-input}  &             input dump file \\
688 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
689 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
690 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
691 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines