ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2821 by tim, Thu Jun 8 06:39:37 2006 UTC vs.
Revision 2840 by tim, Fri Jun 9 02:54:01 2006 UTC

# Line 1 | Line 1
1   \appendix
2   \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4 < Designing object-oriented software is hard, and designing reusable
5 < object-oriented scientific software is even harder. Absence of
6 < applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{Wilson2006}. For instance, in
4 > Absence of applying modern software development practices is the
5 > bottleneck of Scientific Computing community\cite{Wilson2006}. In
6   the last 20 years , there are quite a few MD packages that were
7   developed to solve common MD problems and perform robust simulations
8   . However, many of the codes are legacy programs that are either
# Line 64 | Line 62 | as \texttt{StatProps} (see Sec.~\ref{appendixSection:S
62   program of the package, \texttt{oopse} and it corresponding parallel
63   version \texttt{oopse\_MPI}, as well as other useful utilities, such
64   as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
65 < \texttt{DynamicProps} (see
66 < Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
67 < \texttt{Dump2XYZ} (see
70 < Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 < (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
65 > \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
66 > \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
67 > \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
68   \textit{etc}.
69  
70   \begin{figure}
# Line 113 | Line 109 | OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \t
109   As one of the latest advanced techniques emerged from
110   object-oriented community, design patterns were applied in some of
111   the modern scientific software applications, such as JMol, {\sc
112 < OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
113 < The following sections enumerates some of the patterns used in {\sc
114 < OOPSE}.
112 > OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2005}
113 > \textit{etc}. The following sections enumerates some of the patterns
114 > used in {\sc OOPSE}.
115  
116   \subsection{\label{appendixSection:singleton}Singleton}
117 +
118   The Singleton pattern not only provides a mechanism to restrict
119   instantiation of a class to one object, but also provides a global
120   point of access to the object. Currently implemented as a global
# Line 127 | Line 124 | static data approach in {\sc OOPSE}. {\tt IntegratorFa
124   pollution.Although the singleton pattern can be implemented in
125   various ways  to account for different aspects of the software
126   designs, such as lifespan control \textit{etc}, we only use the
127 < static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
128 < is declared as
132 < \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
127 > static data approach in {\sc OOPSE}. IntegratorFactory class is
128 > declared as
129  
130 <  class IntegratorFactory {
131 <    public:
132 <      static IntegratorFactory* getInstance();
133 <    protected:
134 <      IntegratorFactory();
135 <    private:
136 <      static IntegratorFactory* instance_;
137 <  };
130 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
131 >
132 > class IntegratorFactory {
133 > public:
134 >  static IntegratorFactory*
135 >  getInstance();
136 > protected:
137 >  IntegratorFactory();
138 > private:
139 >  static IntegratorFactory* instance_;
140 > };
141 >
142   \end{lstlisting}
143 +
144   The corresponding implementation is
144 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145  
146 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
147 +
148   IntegratorFactory::instance_ = NULL;
149  
150   IntegratorFactory* getInstance() {
# Line 151 | Line 153 | IntegratorFactory* getInstance() {
153    }
154    return instance_;
155   }
156 +
157   \end{lstlisting}
155 Since constructor is declared as {\tt protected}, a client can not
156 instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 member function {\tt getInstance} serves as the only entry of access
158 to {\tt IntegratorFactory}, this approach fulfills the basic
159 requirement, a single instance. Another consequence of this approach
160 is the automatic destruction since static data are destroyed upon
161 program termination.
158  
159 + Since constructor is declared as protected, a client can not
160 + instantiate IntegratorFactory directly. Moreover, since the member
161 + function getInstance serves as the only entry of access to
162 + IntegratorFactory, this approach fulfills the basic requirement, a
163 + single instance. Another consequence of this approach is the
164 + automatic destruction since static data are destroyed upon program
165 + termination.
166 +
167   \subsection{\label{appendixSection:factoryMethod}Factory Method}
168  
169   Categoried as a creational pattern, the Factory Method pattern deals
170   with the problem of creating objects without specifying the exact
171   class of object that will be created. Factory Method is typically
172   implemented by delegating the creation operation to the subclasses.
173 < \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
174 <  class IntegratorCreator;
175 <  class IntegratorFactory {
176 <    public:
177 <      typedef std::map<std::string, IntegratorCreator*> CreatorMapType;
173 > Parameterized Factory pattern where factory method (
174 > createIntegrator member function) creates products based on the
175 > identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
176 > the identifier has been already registered, the factory method will
177 > invoke the corresponding creator (see List.~\ref{integratorCreator})
178 > which utilizes the modern C++ template technique to avoid excess
179 > subclassing.
180  
181 <      /**
176 <       * Registers a creator with a type identifier
177 <       * @return true if registration is successful, otherwise return false
178 <       * @id the identification of the concrete object
179 <       * @creator the object responsible to create the concrete object
180 <       */
181 <      bool registerIntegrator(IntegratorCreator* creator);
181 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
182  
183 <      /**
184 <       * Looks up the type identifier in the internal map. If it is found, it invokes the
185 <       * corresponding creator for the type identifier and returns its result.
186 <       * @return a pointer of the concrete object, return NULL if no creator is registed for
187 <       * creating this concrete object
188 <       * @param id the identification of the concrete object
189 <       */
190 <      Integrator* createIntegrator(const std::string& id, SimInfo* info);
183 > class IntegratorFactory {
184 > public:
185 >  typedef std::map<string, IntegratorCreator*> CreatorMapType;
186  
187 <    private:
188 <      CreatorMapType creatorMap_;
194 <  };
195 < \end{lstlisting}
196 <
197 < \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
198 <  bool IntegratorFactory::unregisterIntegrator(const std::string& id) {
199 <    return creatorMap_.erase(id) == 1;
187 >  bool registerIntegrator(IntegratorCreator* creator) {
188 >    return creatorMap_.insert(creator->getIdent(), creator).second;
189    }
190  
191 <  Integrator* IntegratorFactory::createIntegrator(const std::string& id, SimInfo* info) {
191 >  Integrator* createIntegrator(const string& id, SimInfo* info) {
192 >    Integrator* result = NULL;
193      CreatorMapType::iterator i = creatorMap_.find(id);
194      if (i != creatorMap_.end()) {
195 <      //invoke functor to create object
206 <      return (i->second)->create(info);
207 <    } else {
208 <      return NULL;
195 >      result = (i->second)->create(info);
196      }
197 +    return result;
198    }
199 +
200 + private:
201 +  CreatorMapType creatorMap_;
202 + };
203   \end{lstlisting}
204  
205 < \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
205 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
206  
207 <  class IntegratorCreator {
208 <  public:
209 <    IntegratorCreator(const std::string& ident) : ident_(ident) {}
218 <    virtual ~IntegratorCreator() {}
219 <    const std::string& getIdent() const { return ident_; }
207 > class IntegratorCreator {
208 > public:
209 >    IntegratorCreator(const string& ident) : ident_(ident) {}
210  
211 +    const string& getIdent() const { return ident_; }
212 +
213      virtual Integrator* create(SimInfo* info) const = 0;
214  
215 <  private:
216 <    std::string ident_;
217 <  };
215 > private:
216 >    string ident_;
217 > };
218  
219 <  template<class ConcreteIntegrator>
220 <  class IntegratorBuilder : public IntegratorCreator {
221 <  public:
222 <    IntegratorBuilder(const std::string& ident) : IntegratorCreator(ident) {}
223 <    virtual  Integrator* create(SimInfo* info) const {return new ConcreteIntegrator(info);}
224 <  };
219 > template<class ConcreteIntegrator>
220 > class IntegratorBuilder : public IntegratorCreator {
221 > public:
222 >  IntegratorBuilder(const string& ident)
223 >                   : IntegratorCreator(ident) {}
224 >  virtual  Integrator* create(SimInfo* info) const {
225 >    return new ConcreteIntegrator(info);
226 >  }
227 > };
228   \end{lstlisting}
229  
230   \subsection{\label{appendixSection:visitorPattern}Visitor}
231  
232 < The purpose of the Visitor Pattern is to encapsulate an operation
233 < that you want to perform on the elements of a data structure. In
234 < this way, you can change the operation being performed on a
235 < structure without the need of changing the class heirarchy of the
236 < elements that you are operating on.
232 > The visitor pattern is designed to decouple the data structure and
233 > algorithms used upon them by collecting related operation from
234 > element classes into other visitor classes, which is equivalent to
235 > adding virtual functions into a set of classes without modifying
236 > their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
237 > structure of Visitor pattern which is used extensively in {\tt
238 > Dump2XYZ}. In order to convert an OOPSE dump file, a series of
239 > distinct operations are performed on different StuntDoubles (See the
240 > class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
241 > in List.~\ref{appendixScheme:element}). Since the hierarchies
242 > remains stable, it is easy to define a visit operation (see
243 > List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
244 > Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
245 > manages a priority visitor list and handles the execution of every
246 > visitor in the priority list on different StuntDoubles.
247  
248 < \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
249 <  class BaseVisitor{
250 <    public:
251 <      virtual void visit(Atom* atom);
252 <      virtual void visit(DirectionalAtom* datom);
253 <      virtual void visit(RigidBody* rb);
254 <  };
248 > \begin{figure}
249 > \centering
250 > \includegraphics[width=\linewidth]{visitor.eps}
251 > \caption[The UML class diagram of Visitor patten] {The UML class
252 > diagram of Visitor patten.} \label{appendixFig:visitorUML}
253 > \end{figure}
254 >
255 > \begin{figure}
256 > \centering
257 > \includegraphics[width=\linewidth]{hierarchy.eps}
258 > \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
259 > the class hierarchy. } \label{oopseFig:hierarchy}
260 > \end{figure}
261 >
262 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
263 >
264 > class StuntDouble { public:
265 >  virtual void accept(BaseVisitor* v) = 0;
266 > };
267 >
268 > class Atom: public StuntDouble { public:
269 >  virtual void accept{BaseVisitor* v*} {
270 >    v->visit(this);
271 >  }
272 > };
273 >
274 > class DirectionalAtom: public Atom { public:
275 >  virtual void accept{BaseVisitor* v*} {
276 >    v->visit(this);
277 >  }
278 > };
279 >
280 > class RigidBody: public StuntDouble { public:
281 >  virtual void accept{BaseVisitor* v*} {
282 >    v->visit(this);
283 >  }
284 > };
285 >
286   \end{lstlisting}
251 \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
252  class StuntDouble {
253    public:
254      virtual void accept(BaseVisitor* v) = 0;
255  };
287  
288 <  class Atom: public StuntDouble {
258 <    public:
259 <      virtual void accept{BaseVisitor* v*} {v->visit(this);}
260 <  };
288 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
289  
290 <  class DirectionalAtom: public Atom {
291 <    public:
292 <      virtual void accept{BaseVisitor* v*} {v->visit(this);}
293 <  };
290 > class BaseVisitor{
291 > public:
292 >  virtual void visit(Atom* atom);
293 >  virtual void visit(DirectionalAtom* datom);
294 >  virtual void visit(RigidBody* rb);
295 > };
296  
297 <  class RigidBody: public StuntDouble {
298 <    public:
299 <      virtual void accept{BaseVisitor* v*} {v->visit(this);}
300 <  };
297 > class BaseAtomVisitor:public BaseVisitor{ public:
298 >  virtual void visit(Atom* atom);
299 >  virtual void visit(DirectionalAtom* datom);
300 >  virtual void visit(RigidBody* rb);
301 > };
302  
303 + class SSDAtomVisitor:public BaseAtomVisitor{ public:
304 +  virtual void visit(Atom* atom);
305 +  virtual void visit(DirectionalAtom* datom);
306 +  virtual void visit(RigidBody* rb);
307 + };
308 +
309 + class CompositeVisitor: public BaseVisitor {
310 + public:
311 +
312 +  typedef list<pair<BaseVisitor*, int> > VistorListType;
313 +  typedef VistorListType::iterator VisitorListIterator;
314 +  virtual void visit(Atom* atom) {
315 +    VisitorListIterator i;
316 +    BaseVisitor* curVisitor;
317 +    for(i = visitorList.begin();i != visitorList.end();++i) {
318 +      atom->accept(*i);
319 +    }
320 +  }
321 +
322 +  virtual void visit(DirectionalAtom* datom) {
323 +    VisitorListIterator i;
324 +    BaseVisitor* curVisitor;
325 +    for(i = visitorList.begin();i != visitorList.end();++i) {
326 +      atom->accept(*i);
327 +    }
328 +  }
329 +
330 +  virtual void visit(RigidBody* rb) {
331 +    VisitorListIterator i;
332 +    std::vector<Atom*> myAtoms;
333 +    std::vector<Atom*>::iterator ai;
334 +    myAtoms = rb->getAtoms();
335 +    for(i = visitorList.begin();i != visitorList.end();++i) {{
336 +      rb->accept(*i);
337 +      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
338 +        (*ai)->accept(*i);
339 +    }
340 +  }
341 +
342 +  void addVisitor(BaseVisitor* v, int priority);
343 +
344 +  protected:
345 +    VistorListType visitorList;
346 + };
347 +
348   \end{lstlisting}
349 +
350   \section{\label{appendixSection:concepts}Concepts}
351  
352   OOPSE manipulates both traditional atoms as well as some objects
353   that {\it behave like atoms}.  These objects can be rigid
354   collections of atoms or atoms which have orientational degrees of
355 < freedom.  Here is a diagram of the class heirarchy:
356 <
357 < %\begin{figure}
358 < %\centering
359 < %\includegraphics[width=3in]{heirarchy.eps}
360 < %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
361 < %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
362 < %selection syntax allows the user to select any of the objects that
363 < %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
287 < %\end{figure}
288 <
355 > freedom.  A diagram of the class hierarchy is illustrated in
356 > Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
357 > DirectionalAtom in {\sc OOPSE} have their own names which are
358 > specified in the {\tt .md} file. In contrast, RigidBodies are
359 > denoted by their membership and index inside a particular molecule:
360 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
361 > on the specifics of the simulation). The names of rigid bodies are
362 > generated automatically. For example, the name of the first rigid
363 > body in a DMPC molecule is DMPC\_RB\_0.
364   \begin{itemize}
365   \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
366   integrators and minimizers.
# Line 294 | Line 369 | DirectionalAtom}s which behaves as a single unit.
369   \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
370   DirectionalAtom}s which behaves as a single unit.
371   \end{itemize}
297
298 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
299 own names which are specified in the {\tt .md} file. In contrast,
300 RigidBodies are denoted by their membership and index inside a
301 particular molecule: [MoleculeName]\_RB\_[index] (the contents
302 inside the brackets depend on the specifics of the simulation). The
303 names of rigid bodies are generated automatically. For example, the
304 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
372  
373   \section{\label{appendixSection:syntax}Syntax of the Select Command}
374  
375 < The most general form of the select command is: {\tt select {\it
376 < expression}}. This expression represents an arbitrary set of
310 < StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
311 < composed of either name expressions, index expressions, predefined
312 < sets, user-defined expressions, comparison operators, within
313 < expressions, or logical combinations of the above expression types.
314 < Expressions can be combined using parentheses and the Boolean
315 < operators.
375 > {\sc OOPSE} provides a powerful selection utility to select
376 > StuntDoubles. The most general form of the select command is:
377  
378 + {\tt select {\it expression}}.
379 +
380 + This expression represents an arbitrary set of StuntDoubles (Atoms
381 + or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
382 + name expressions, index expressions, predefined sets, user-defined
383 + expressions, comparison operators, within expressions, or logical
384 + combinations of the above expression types. Expressions can be
385 + combined using parentheses and the Boolean operators.
386 +
387   \subsection{\label{appendixSection:logical}Logical expressions}
388  
389   The logical operators allow complex queries to be constructed out of

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines