ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2688 by tim, Tue Apr 4 04:32:24 2006 UTC vs.
Revision 2829 by tim, Thu Jun 8 20:24:39 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{chapt:appendix}APPENDIX}
1 > \appendix
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4   Designing object-oriented software is hard, and designing reusable
5   object-oriented scientific software is even harder. Absence of
6   applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{wilson}. For instance, in the
8 < last 20 years , there are quite a few MD packages that were
7 > Scientific Computing community\cite{Wilson2006}. For instance, in
8 > the last 20 years , there are quite a few MD packages that were
9   developed to solve common MD problems and perform robust simulations
10   . However, many of the codes are legacy programs that are either
11   poorly organized or extremely complex. Usually, these packages were
# Line 13 | Line 14 | documents which is crucial to the maintenance and exte
14   coordination to enforce design and programming guidelines. Moreover,
15   most MD programs also suffer from missing design and implement
16   documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38  
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83   Design patterns are optimal solutions to commonly-occurring problems
84   in software design. Although originated as an architectural concept
85 < for buildings and towns by Christopher Alexander \cite{alexander},
86 < software patterns first became popular with the wide acceptance of
87 < the book, Design Patterns: Elements of Reusable Object-Oriented
88 < Software \cite{gamma94}. Patterns reflect the experience, knowledge
89 < and insights of developers who have successfully used these patterns
90 < in their own work. Patterns are reusable. They provide a ready-made
91 < solution that can be adapted to different problems as necessary.
92 < Pattern are expressive. they provide a common vocabulary of
93 < solutions that can express large solutions succinctly.
85 > for buildings and towns by Christopher Alexander
86 > \cite{Alexander1987}, software patterns first became popular with
87 > the wide acceptance of the book, Design Patterns: Elements of
88 > Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 > the experience, knowledge and insights of developers who have
90 > successfully used these patterns in their own work. Patterns are
91 > reusable. They provide a ready-made solution that can be adapted to
92 > different problems as necessary. Pattern are expressive. they
93 > provide a common vocabulary of solutions that can express large
94 > solutions succinctly.
95  
96   Patterns are usually described using a format that includes the
97   following information:
# Line 47 | Line 112 | the modern scientific software applications, such as J
112  
113   As one of the latest advanced techniques emerged from
114   object-oriented community, design patterns were applied in some of
115 < the modern scientific software applications, such as JMol, OOPSE
116 < \cite{Meineke05} and PROTOMOL \cite{} \textit{etc}.
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120 + \subsection{\label{appendixSection:singleton}Singleton}
121 + The Singleton pattern not only provides a mechanism to restrict
122 + instantiation of a class to one object, but also provides a global
123 + point of access to the object. Currently implemented as a global
124 + variable, the logging utility which reports error and warning
125 + messages to the console in {\sc OOPSE} is a good candidate for
126 + applying the Singleton pattern to avoid the global namespace
127 + pollution.Although the singleton pattern can be implemented in
128 + various ways  to account for different aspects of the software
129 + designs, such as lifespan control \textit{etc}, we only use the
130 + static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 + is declared as
132 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 +
134 + class IntegratorFactory {
135 +  public:
136 +    static IntegratorFactory* getInstance();
137 +    protected:
138 +      IntegratorFactory();
139 +    private:
140 +      static IntegratorFactory* instance_;
141 + };
142 +
143 + \end{lstlisting}
144 + The corresponding implementation is
145 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
146 +
147 + IntegratorFactory::instance_ = NULL;
148 +
149 + IntegratorFactory* getInstance() {
150 +  if (instance_ == NULL){
151 +    instance_ = new IntegratorFactory;
152 +  }
153 +  return instance_;
154 + }
155 +
156 + \end{lstlisting}
157 + Since constructor is declared as {\tt protected}, a client can not
158 + instantiate {\tt IntegratorFactory} directly. Moreover, since the
159 + member function {\tt getInstance} serves as the only entry of access
160 + to {\tt IntegratorFactory}, this approach fulfills the basic
161 + requirement, a single instance. Another consequence of this approach
162 + is the automatic destruction since static data are destroyed upon
163 + program termination.
164 +
165   \subsection{\label{appendixSection:factoryMethod}Factory Method}
54 The Factory Method pattern is a creational pattern which deals with
55 the problem of creating objects without specifying the exact class
56 of object that will be created. Factory Method solves this problem
57 by defining a separate method for creating the objects, which
58 subclasses can then override to specify the derived type of product
59 that will be created.
166  
167 + Categoried as a creational pattern, the Factory Method pattern deals
168 + with the problem of creating objects without specifying the exact
169 + class of object that will be created. Factory Method is typically
170 + implemented by delegating the creation operation to the subclasses.
171  
172 + Registers a creator with a type identifier. Looks up the type
173 + identifier in the internal map. If it is found, it invokes the
174 + corresponding creator for the type identifier and returns its
175 + result.
176 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
177 +
178 + class IntegratorFactory {
179 +  public:
180 +    typedef std::map<string, IntegratorCreator*> CreatorMapType;
181 +
182 +    bool registerIntegrator(IntegratorCreator* creator);
183 +
184 +    Integrator* createIntegrator(const string& id, SimInfo* info);
185 +
186 +  private:
187 +    CreatorMapType creatorMap_;
188 + };
189 +
190 + \end{lstlisting}
191 +
192 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
193 +
194 + bool IntegratorFactory::unregisterIntegrator(const string& id) {
195 +  return creatorMap_.erase(id) == 1;
196 + }
197 +
198 + Integrator* IntegratorFactory::createIntegrator(const string& id,
199 +                                                SimInfo* info) {
200 +  CreatorMapType::iterator i = creatorMap_.find(id);
201 +  if (i != creatorMap_.end()) {
202 +    return (i->second)->create(info);
203 +  } else {
204 +    return NULL;
205 +  }
206 + }
207 +
208 + \end{lstlisting}
209 +
210 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
211 +
212 + class IntegratorCreator {
213 +  public:
214 +    IntegratorCreator(const string& ident) : ident_(ident) {}
215 +
216 +    const string& getIdent() const { return ident_; }
217 +
218 +    virtual Integrator* create(SimInfo* info) const = 0;
219 +
220 +  private:
221 +    string ident_;
222 + };
223 +
224 + template<class ConcreteIntegrator>
225 + class IntegratorBuilder : public IntegratorCreator {
226 +  public:
227 +    IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
228 +    virtual  Integrator* create(SimInfo* info) const {
229 +      return new ConcreteIntegrator(info);
230 +    }
231 + };
232 + \end{lstlisting}
233 +
234   \subsection{\label{appendixSection:visitorPattern}Visitor}
235 +
236   The purpose of the Visitor Pattern is to encapsulate an operation
237 < that you want to perform on the elements of a data structure. In
238 < this way, you can change the operation being performed on a
239 < structure without the need of changing the classes of the elements
240 < that you are operating on.
237 > that you want to perform on the elements. The operation being
238 > performed on a structure can be switched without changing the
239 > interfaces  of the elements. In other words, one can add virtual
240 > functions into a set of classes without modifying their interfaces.
241 > The UML class diagram of Visitor patten is shown in
242 > Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
243 > Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
244 > extensively.
245  
246 + \begin{figure}
247 + \centering
248 + \includegraphics[width=\linewidth]{visitor.eps}
249 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
250 + of {\sc OOPSE}} \label{appendixFig:visitorUML}
251 + \end{figure}
252  
253 < \subsection{\label{appendixSection:templateMethod}Template Method}
253 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
254  
255 + class BaseVisitor{
256 +  public:
257 +    virtual void visit(Atom* atom);
258 +    virtual void visit(DirectionalAtom* datom);
259 +    virtual void visit(RigidBody* rb);
260 + };
261  
262 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
262 > \end{lstlisting}
263  
264 < \section{\label{appendixSection:hierarchy}Hierarchy}
264 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
265  
266 < \subsection{\label{appendixSection:selectionSyntax}Selection Syntax}
266 > class StuntDouble {
267 >  public:
268 >    virtual void accept(BaseVisitor* v) = 0;
269 > };
270  
271 < \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}
271 > class Atom: public StuntDouble {
272 >  public:
273 >    virtual void accept{BaseVisitor* v*} {
274 >      v->visit(this);
275 >    }
276 > };
277  
278 < \subsection{\label{appendixSection:staticProps}Static Properties}
278 > class DirectionalAtom: public Atom {
279 >  public:
280 >    virtual void accept{BaseVisitor* v*} {
281 >      v->visit(this);
282 >    }
283 > };
284  
285 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
285 > class RigidBody: public StuntDouble {
286 >  public:
287 >    virtual void accept{BaseVisitor* v*} {
288 >      v->visit(this);
289 >    }
290 > };
291 >
292 > \end{lstlisting}
293 >
294 > \section{\label{appendixSection:concepts}Concepts}
295 >
296 > OOPSE manipulates both traditional atoms as well as some objects
297 > that {\it behave like atoms}.  These objects can be rigid
298 > collections of atoms or atoms which have orientational degrees of
299 > freedom.  A diagram of the class heirarchy is illustrated in
300 > Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
301 > DirectionalAtom in {\sc OOPSE} have their own names which are
302 > specified in the {\tt .md} file. In contrast, RigidBodies are
303 > denoted by their membership and index inside a particular molecule:
304 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
305 > on the specifics of the simulation). The names of rigid bodies are
306 > generated automatically. For example, the name of the first rigid
307 > body in a DMPC molecule is DMPC\_RB\_0.
308 > \begin{figure}
309 > \centering
310 > \includegraphics[width=\linewidth]{heirarchy.eps}
311 > \caption[Class heirarchy for StuntDoubles in {\sc OOPSE}]{ The class
312 > heirarchy of StuntDoubles in {\sc OOPSE}.
313 > \begin{itemize}
314 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
315 > integrators and minimizers.
316 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
317 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
318 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
319 > DirectionalAtom}s which behaves as a single unit.
320 > \end{itemize}
321 > } \label{oopseFig:heirarchy}
322 > \end{figure}
323 >
324 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
325 >
326 > The most general form of the select command is: {\tt select {\it
327 > expression}}. This expression represents an arbitrary set of
328 > StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
329 > composed of either name expressions, index expressions, predefined
330 > sets, user-defined expressions, comparison operators, within
331 > expressions, or logical combinations of the above expression types.
332 > Expressions can be combined using parentheses and the Boolean
333 > operators.
334 >
335 > \subsection{\label{appendixSection:logical}Logical expressions}
336 >
337 > The logical operators allow complex queries to be constructed out of
338 > simpler ones using the standard boolean connectives {\bf and}, {\bf
339 > or}, {\bf not}. Parentheses can be used to alter the precedence of
340 > the operators.
341 >
342 > \begin{center}
343 > \begin{tabular}{|ll|}
344 > \hline
345 > {\bf logical operator} & {\bf equivalent operator}  \\
346 > \hline
347 > and & ``\&'', ``\&\&'' \\
348 > or & ``$|$'', ``$||$'', ``,'' \\
349 > not & ``!''  \\
350 > \hline
351 > \end{tabular}
352 > \end{center}
353 >
354 > \subsection{\label{appendixSection:name}Name expressions}
355 >
356 > \begin{center}
357 > \begin{tabular}{|llp{2in}|}
358 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
359 > of
360 > examples} \\
361 > \hline expression without ``.'' & select DMPC & select all
362 > StuntDoubles
363 > belonging to all DMPC molecules \\
364 > & select C* & select all atoms which have atom types beginning with C
365 > \\
366 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
367 > only select the rigid bodies, and not the atoms belonging to them). \\
368 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
369 > O\_TIP3P
370 > atoms belonging to TIP3P molecules \\
371 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
372 > the first
373 > RigidBody in each DMPC molecule \\
374 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
375 > molecule \\
376 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
377 > select all atoms
378 > belonging to all rigid bodies within all DMPC molecules \\
379 > \hline
380 > \end{tabular}
381 > \end{center}
382 >
383 > \subsection{\label{appendixSection:index}Index expressions}
384 >
385 > \begin{center}
386 > \begin{tabular}{|lp{4in}|}
387 > \hline
388 > {\bf examples} & {\bf translation of examples} \\
389 > \hline
390 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
391 > select 20 to 30 & select all of the StuntDoubles belonging to
392 > molecules which have global indices between 20 (inclusive) and 30
393 > (exclusive) \\
394 > \hline
395 > \end{tabular}
396 > \end{center}
397 >
398 > \subsection{\label{appendixSection:predefined}Predefined sets}
399 >
400 > \begin{center}
401 > \begin{tabular}{|ll|}
402 > \hline
403 > {\bf keyword} & {\bf description} \\
404 > \hline
405 > all & select all StuntDoubles \\
406 > none & select none of the StuntDoubles \\
407 > \hline
408 > \end{tabular}
409 > \end{center}
410 >
411 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
412 >
413 > Users can define arbitrary terms to represent groups of
414 > StuntDoubles, and then use the define terms in select commands. The
415 > general form for the define command is: {\bf define {\it term
416 > expression}}. Once defined, the user can specify such terms in
417 > boolean expressions
418 >
419 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
420 >
421 > {\tt select SSDWATER}
422 >
423 > \subsection{\label{appendixSection:comparison}Comparison expressions}
424 >
425 > StuntDoubles can be selected by using comparision operators on their
426 > properties. The general form for the comparison command is: a
427 > property name, followed by a comparision operator and then a number.
428 >
429 > \begin{center}
430 > \begin{tabular}{|l|l|}
431 > \hline
432 > {\bf property} & mass, charge \\
433 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
434 > ``$<=$'', ``$!=$'' \\
435 > \hline
436 > \end{tabular}
437 > \end{center}
438 >
439 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
440 > would select StuntDoubles which have mass greater than 16.0 and
441 > charges less than -2.
442 >
443 > \subsection{\label{appendixSection:within}Within expressions}
444 >
445 > The ``within'' keyword allows the user to select all StuntDoubles
446 > within the specified distance (in Angstroms) from a selection,
447 > including the selected atom itself. The general form for within
448 > selection is: {\tt select within(distance, expression)}
449 >
450 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
451 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
452 > atoms.
453 >
454 >
455 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
456 >
457 > \subsection{\label{appendixSection:StaticProps}StaticProps}
458 >
459 > {\tt StaticProps} can compute properties which are averaged over
460 > some or all of the configurations that are contained within a dump
461 > file. The most common example of a static property that can be
462 > computed is the pair distribution function between atoms of type $A$
463 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
464 > also be used to compute the density distributions of other molecules
465 > in a reference frame {\it fixed to the body-fixed reference frame}
466 > of a selected atom or rigid body.
467 >
468 > There are five seperate radial distribution functions availiable in
469 > OOPSE. Since every radial distrbution function invlove the
470 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
471 > -{}-sele2} must be specified to tell StaticProps which bodies to
472 > include in the calculation.
473 >
474 > \begin{description}
475 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
476 > \begin{equation*}
477 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
478 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
479 > \end{equation*}
480 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
481 > function. The angle is defined by the intermolecular vector
482 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
483 > \begin{equation*}
484 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
485 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
486 > \theta_{ij} - \cos \theta)\rangle
487 > \end{equation*}
488 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
489 > function. The angle is defined by the $z$-axes of the two
490 > DirectionalAtoms A and B.
491 > \begin{equation*}
492 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
493 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
494 > \omega_{ij} - \cos \omega)\rangle
495 > \end{equation*}
496 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
497 > space $\theta, \omega$ defined by the two angles mentioned above.
498 > \begin{equation*}
499 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
500 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
501 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
502 > \omega)\rangle
503 > \end{equation*}
504 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
505 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
506 > and {\tt -{}-refsele} must be given to define A's internal
507 > coordinate set as the reference frame for the calculation.
508 > \end{description}
509 >
510 > The vectors (and angles) associated with these angular pair
511 > distribution functions are most easily seen in the figure below:
512 >
513 > \begin{figure}
514 > \centering
515 > \includegraphics[width=3in]{definition.eps}
516 > \caption[Definitions of the angles between directional objects]{ \\
517 > Any two directional objects (DirectionalAtoms and RigidBodies) have
518 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
519 > their body-fixed frames.} \label{oopseFig:gofr}
520 > \end{figure}
521 >
522 > Due to the fact that the selected StuntDoubles from two selections
523 > may be overlapped, {\tt StaticProps} performs the calculation in
524 > three stages which are illustrated in
525 > Fig.~\ref{oopseFig:staticPropsProcess}.
526 >
527 > \begin{figure}
528 > \centering
529 > \includegraphics[width=\linewidth]{staticPropsProcess.eps}
530 > \caption[A representation of the three-stage correlations in
531 > \texttt{StaticProps}]{This diagram illustrates three-stage
532 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
533 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
534 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
535 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
536 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
537 > the contrary, the third stage($C$ and $C$) are completely
538 > overlapping} \label{oopseFig:staticPropsProcess}
539 > \end{figure}
540 >
541 > The options available for {\tt StaticProps} are as follows:
542 > \begin{longtable}[c]{|EFG|}
543 > \caption{StaticProps Command-line Options}
544 > \\ \hline
545 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
546 > \endhead
547 > \hline
548 > \endfoot
549 >  -h& {\tt -{}-help}                    &  Print help and exit \\
550 >  -V& {\tt -{}-version}                 &  Print version and exit \\
551 >  -i& {\tt -{}-input}          &  input dump file \\
552 >  -o& {\tt -{}-output}         &  output file name \\
553 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
554 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
555 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
556 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
557 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
558 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
559 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
560 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
561 >    & {\tt -{}-molname}           & molecule name \\
562 >    & {\tt -{}-begin}                & begin internal index \\
563 >    & {\tt -{}-end}                  & end internal index \\
564 > \hline
565 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
566 > \hline
567 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
568 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
569 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
570 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
571 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
572 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
573 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
574 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
575 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
576 > \end{longtable}
577 >
578 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
579 >
580 > {\tt DynamicProps} computes time correlation functions from the
581 > configurations stored in a dump file.  Typical examples of time
582 > correlation functions are the mean square displacement and the
583 > velocity autocorrelation functions.   Once again, the selection
584 > syntax can be used to specify the StuntDoubles that will be used for
585 > the calculation.  A general time correlation function can be thought
586 > of as:
587 > \begin{equation}
588 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
589 > \end{equation}
590 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
591 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
592 > vector property associated with an atom of type $B$ at a different
593 > time $t^{\prime}$.  In most autocorrelation functions, the vector
594 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
595 > $B$) are identical, and the three calculations built in to {\tt
596 > DynamicProps} make these assumptions.  It is possible, however, to
597 > make simple modifications to the {\tt DynamicProps} code to allow
598 > the use of {\it cross} time correlation functions (i.e. with
599 > different vectors).  The ability to use two selection scripts to
600 > select different types of atoms is already present in the code.
601 >
602 > For large simulations, the trajectory files can sometimes reach
603 > sizes in excess of several gigabytes. In order to effectively
604 > analyze that amount of data. In order to prevent a situation where
605 > the program runs out of memory due to large trajectories,
606 > \texttt{dynamicProps} will estimate the size of free memory at
607 > first, and determine the number of frames in each block, which
608 > allows the operating system to load two blocks of data
609 > simultaneously without swapping. Upon reading two blocks of the
610 > trajectory, \texttt{dynamicProps} will calculate the time
611 > correlation within the first block and the cross correlations
612 > between the two blocks. This second block is then freed and then
613 > incremented and the process repeated until the end of the
614 > trajectory. Once the end is reached, the first block is freed then
615 > incremented, until all frame pairs have been correlated in time.
616 > This process is illustrated in
617 > Fig.~\ref{oopseFig:dynamicPropsProcess}.
618 >
619 > \begin{figure}
620 > \centering
621 > \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
622 > \caption[A representation of the block correlations in
623 > \texttt{dynamicProps}]{This diagram illustrates block correlations
624 > processing in \texttt{dynamicProps}. The shaded region represents
625 > the self correlation of the block, and the open blocks are read one
626 > at a time and the cross correlations between blocks are calculated.}
627 > \label{oopseFig:dynamicPropsProcess}
628 > \end{figure}
629 >
630 > The options available for DynamicProps are as follows:
631 > \begin{longtable}[c]{|EFG|}
632 > \caption{DynamicProps Command-line Options}
633 > \\ \hline
634 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
635 > \endhead
636 > \hline
637 > \endfoot
638 >  -h& {\tt -{}-help}                   & Print help and exit \\
639 >  -V& {\tt -{}-version}                & Print version and exit \\
640 >  -i& {\tt -{}-input}         & input dump file \\
641 >  -o& {\tt -{}-output}        & output file name \\
642 >    & {\tt -{}-sele1} & select first StuntDouble set \\
643 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
644 > \hline
645 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
646 > \hline
647 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
648 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
649 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
650 > \end{longtable}
651 >
652 > \section{\label{appendixSection:tools}Other Useful Utilities}
653 >
654 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
655 >
656 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
657 > which can be opened by other molecular dynamics viewers such as Jmol
658 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
659 > as follows:
660 >
661 >
662 > \begin{longtable}[c]{|EFG|}
663 > \caption{Dump2XYZ Command-line Options}
664 > \\ \hline
665 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
666 > \endhead
667 > \hline
668 > \endfoot
669 >  -h & {\tt -{}-help} &                        Print help and exit \\
670 >  -V & {\tt -{}-version} &                     Print version and exit \\
671 >  -i & {\tt -{}-input}  &             input dump file \\
672 >  -o & {\tt -{}-output} &             output file name \\
673 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
674 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
675 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
676 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
677 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
678 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
679 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
680 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
681 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
682 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
683 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
684 > converted. \\
685 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
686 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
687 > \end{longtable}
688 >
689 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
690 >
691 > {\tt Hydro} can calculate resistance and diffusion tensors at the
692 > center of resistance. Both tensors at the center of diffusion can
693 > also be reported from the program, as well as the coordinates for
694 > the beads which are used to approximate the arbitrary shapes. The
695 > options available for Hydro are as follows:
696 > \begin{longtable}[c]{|EFG|}
697 > \caption{Hydrodynamics Command-line Options}
698 > \\ \hline
699 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
700 > \endhead
701 > \hline
702 > \endfoot
703 >  -h & {\tt -{}-help} &                        Print help and exit \\
704 >  -V & {\tt -{}-version} &                     Print version and exit \\
705 >  -i & {\tt -{}-input}  &             input dump file \\
706 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
707 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
708 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
709 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines