ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2688 by tim, Tue Apr 4 04:32:24 2006 UTC vs.
Revision 2832 by tim, Thu Jun 8 21:09:22 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{chapt:appendix}APPENDIX}
1 > \appendix
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4   Designing object-oriented software is hard, and designing reusable
5   object-oriented scientific software is even harder. Absence of
6   applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{wilson}. For instance, in the
8 < last 20 years , there are quite a few MD packages that were
7 > Scientific Computing community\cite{Wilson2006}. For instance, in
8 > the last 20 years , there are quite a few MD packages that were
9   developed to solve common MD problems and perform robust simulations
10   . However, many of the codes are legacy programs that are either
11   poorly organized or extremely complex. Usually, these packages were
# Line 13 | Line 14 | documents which is crucial to the maintenance and exte
14   coordination to enforce design and programming guidelines. Moreover,
15   most MD programs also suffer from missing design and implement
16   documents which is crucial to the maintenance and extensibility.
17 + Along the way of studying structural and dynamic processes in
18 + condensed phase systems like biological membranes and nanoparticles,
19 + we developed and maintained an Object-Oriented Parallel Simulation
20 + Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 + unique features
22 + \begin{enumerate}
23 +  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 + atom types (transition metals, point dipoles, sticky potentials,
25 + Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 + degrees of freedom), as well as rigid bodies.
27 +  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 + Beowulf clusters to obtain very efficient parallelism.
29 +  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 + orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 + ensembles.
32 +  \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 + Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 +  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 +  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
36 + extended-Soft Sticky Dipole (SSD/E) model for water.
37 + \end{enumerate}
38  
39 + \section{\label{appendixSection:architecture }Architecture}
40 +
41 + Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 + uses C++ Standard Template Library (STL) and fortran modules as the
43 + foundation. As an extensive set of the STL and Fortran90 modules,
44 + {\sc Base Classes} provide generic implementations of mathematical
45 + objects (e.g., matrices, vectors, polynomials, random number
46 + generators) and advanced data structures and algorithms(e.g., tuple,
47 + bitset, generic data, string manipulation). The molecular data
48 + structures for the representation of atoms, bonds, bends, torsions,
49 + rigid bodies and molecules \textit{etc} are contained in the {\sc
50 + Kernel} which is implemented with {\sc Base Classes} and are
51 + carefully designed to provide maximum extensibility and flexibility.
52 + The functionality required for applications is provide by the third
53 + layer which contains Input/Output, Molecular Mechanics and Structure
54 + modules. Input/Output module not only implements general methods for
55 + file handling, but also defines a generic force field interface.
56 + Another important component of Input/Output module is the meta-data
57 + file parser, which is rewritten using ANother Tool for Language
58 + Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 + Mechanics module consists of energy minimization and a wide
60 + varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 + The structure module contains a flexible and powerful selection
62 + library which syntax is elaborated in
63 + Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 + program of the package, \texttt{oopse} and it corresponding parallel
65 + version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 + as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 + \texttt{DynamicProps} (see
68 + Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 + \texttt{Dump2XYZ} (see
70 + Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 + (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 + \textit{etc}.
73 +
74 + \begin{figure}
75 + \centering
76 + \includegraphics[width=\linewidth]{architecture.eps}
77 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 + of {\sc OOPSE}} \label{appendixFig:architecture}
79 + \end{figure}
80 +
81   \section{\label{appendixSection:desginPattern}Design Pattern}
82  
83   Design patterns are optimal solutions to commonly-occurring problems
84   in software design. Although originated as an architectural concept
85 < for buildings and towns by Christopher Alexander \cite{alexander},
86 < software patterns first became popular with the wide acceptance of
87 < the book, Design Patterns: Elements of Reusable Object-Oriented
88 < Software \cite{gamma94}. Patterns reflect the experience, knowledge
89 < and insights of developers who have successfully used these patterns
90 < in their own work. Patterns are reusable. They provide a ready-made
91 < solution that can be adapted to different problems as necessary.
92 < Pattern are expressive. they provide a common vocabulary of
93 < solutions that can express large solutions succinctly.
85 > for buildings and towns by Christopher Alexander
86 > \cite{Alexander1987}, software patterns first became popular with
87 > the wide acceptance of the book, Design Patterns: Elements of
88 > Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 > the experience, knowledge and insights of developers who have
90 > successfully used these patterns in their own work. Patterns are
91 > reusable. They provide a ready-made solution that can be adapted to
92 > different problems as necessary. Pattern are expressive. they
93 > provide a common vocabulary of solutions that can express large
94 > solutions succinctly.
95  
96   Patterns are usually described using a format that includes the
97   following information:
# Line 47 | Line 112 | the modern scientific software applications, such as J
112  
113   As one of the latest advanced techniques emerged from
114   object-oriented community, design patterns were applied in some of
115 < the modern scientific software applications, such as JMol, OOPSE
116 < \cite{Meineke05} and PROTOMOL \cite{} \textit{etc}.
115 > the modern scientific software applications, such as JMol, {\sc
116 > OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 > The following sections enumerates some of the patterns used in {\sc
118 > OOPSE}.
119  
120 + \subsection{\label{appendixSection:singleton}Singleton}
121 + The Singleton pattern not only provides a mechanism to restrict
122 + instantiation of a class to one object, but also provides a global
123 + point of access to the object. Currently implemented as a global
124 + variable, the logging utility which reports error and warning
125 + messages to the console in {\sc OOPSE} is a good candidate for
126 + applying the Singleton pattern to avoid the global namespace
127 + pollution.Although the singleton pattern can be implemented in
128 + various ways  to account for different aspects of the software
129 + designs, such as lifespan control \textit{etc}, we only use the
130 + static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 + is declared as
132 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133 +
134 + class IntegratorFactory {
135 + public:
136 +  static IntegratorFactory*
137 +  getInstance();
138 + protected:
139 +  IntegratorFactory();
140 + private:
141 +  static IntegratorFactory* instance_;
142 + };
143 +
144 + \end{lstlisting}
145 + The corresponding implementation is
146 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
147 +
148 + IntegratorFactory::instance_ = NULL;
149 +
150 + IntegratorFactory* getInstance() {
151 +  if (instance_ == NULL){
152 +    instance_ = new IntegratorFactory;
153 +  }
154 +  return instance_;
155 + }
156 +
157 + \end{lstlisting}
158 + Since constructor is declared as {\tt protected}, a client can not
159 + instantiate {\tt IntegratorFactory} directly. Moreover, since the
160 + member function {\tt getInstance} serves as the only entry of access
161 + to {\tt IntegratorFactory}, this approach fulfills the basic
162 + requirement, a single instance. Another consequence of this approach
163 + is the automatic destruction since static data are destroyed upon
164 + program termination.
165 +
166   \subsection{\label{appendixSection:factoryMethod}Factory Method}
54 The Factory Method pattern is a creational pattern which deals with
55 the problem of creating objects without specifying the exact class
56 of object that will be created. Factory Method solves this problem
57 by defining a separate method for creating the objects, which
58 subclasses can then override to specify the derived type of product
59 that will be created.
167  
168 + Categoried as a creational pattern, the Factory Method pattern deals
169 + with the problem of creating objects without specifying the exact
170 + class of object that will be created. Factory Method is typically
171 + implemented by delegating the creation operation to the subclasses.
172  
173 + Registers a creator with a type identifier. Looks up the type
174 + identifier in the internal map. If it is found, it invokes the
175 + corresponding creator for the type identifier and returns its
176 + result.
177 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
178 +
179 + class IntegratorFactory {
180 + public:
181 +  typedef std::map<string, IntegratorCreator*> CreatorMapType;
182 +
183 +  bool registerIntegrator(IntegratorCreator* creator) {
184 +    return creatorMap_.insert(creator->getIdent(), creator).second;
185 +  }
186 +
187 +  Integrator* createIntegrator(const string& id, SimInfo* info) {
188 +    Integrator* result = NULL;
189 +    CreatorMapType::iterator i = creatorMap_.find(id);
190 +    if (i != creatorMap_.end()) {
191 +      result = (i->second)->create(info);
192 +    }
193 +    return result;
194 +  }
195 +
196 + private:
197 +  CreatorMapType creatorMap_;
198 + };
199 + \end{lstlisting}
200 + \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)]Souce code of creator classes.},label={appendixScheme:integratorCreator}]
201 +
202 + class IntegratorCreator {
203 + public:
204 +    IntegratorCreator(const string& ident) : ident_(ident) {}
205 +
206 +    const string& getIdent() const { return ident_; }
207 +
208 +    virtual Integrator* create(SimInfo* info) const = 0;
209 +
210 + private:
211 +    string ident_;
212 + };
213 +
214 + template<class ConcreteIntegrator> class IntegratorBuilder : public
215 + IntegratorCreator {
216 + public:
217 +  IntegratorBuilder(const string& ident)
218 +                     : IntegratorCreator(ident) {}
219 +  virtual  Integrator* create(SimInfo* info) const {
220 +    return new ConcreteIntegrator(info);
221 +  }
222 + };
223 + \end{lstlisting}
224 +
225   \subsection{\label{appendixSection:visitorPattern}Visitor}
226 +
227   The purpose of the Visitor Pattern is to encapsulate an operation
228 < that you want to perform on the elements of a data structure. In
229 < this way, you can change the operation being performed on a
230 < structure without the need of changing the classes of the elements
231 < that you are operating on.
228 > that you want to perform on the elements. The operation being
229 > performed on a structure can be switched without changing the
230 > interfaces  of the elements. In other words, one can add virtual
231 > functions into a set of classes without modifying their interfaces.
232 > The UML class diagram of Visitor patten is shown in
233 > Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
234 > Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
235 > extensively.
236  
237 + \begin{figure}
238 + \centering
239 + \includegraphics[width=\linewidth]{visitor.eps}
240 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
241 + of {\sc OOPSE}} \label{appendixFig:visitorUML}
242 + \end{figure}
243  
244 < \subsection{\label{appendixSection:templateMethod}Template Method}
244 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
245  
246 + class BaseVisitor{
247 + public:
248 +  virtual void visit(Atom* atom);
249 +  virtual void visit(DirectionalAtom* datom);
250 +  virtual void visit(RigidBody* rb);
251 + };
252  
253 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
253 > \end{lstlisting}
254  
255 < \section{\label{appendixSection:hierarchy}Hierarchy}
255 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
256  
257 < \subsection{\label{appendixSection:selectionSyntax}Selection Syntax}
257 > class StuntDouble {
258 > public:
259 >  virtual void accept(BaseVisitor* v) = 0;
260 > };
261  
262 < \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}
262 > class Atom: public StuntDouble {
263 > public:
264 >  virtual void accept{BaseVisitor* v*} {
265 >    v->visit(this);
266 >  }
267 > };
268  
269 < \subsection{\label{appendixSection:staticProps}Static Properties}
269 > class DirectionalAtom: public Atom {
270 > public:
271 >  virtual void accept{BaseVisitor* v*} {
272 >    v->visit(this);
273 >  }
274 > };
275  
276 < \subsection{\label{appendixSection:dynamicProps}Dynamics Properties}
276 > class RigidBody: public StuntDouble {
277 > public:
278 >  virtual void accept{BaseVisitor* v*} {
279 >    v->visit(this);
280 >  }
281 > };
282 >
283 > \end{lstlisting}
284 >
285 > \section{\label{appendixSection:concepts}Concepts}
286 >
287 > OOPSE manipulates both traditional atoms as well as some objects
288 > that {\it behave like atoms}.  These objects can be rigid
289 > collections of atoms or atoms which have orientational degrees of
290 > freedom.  A diagram of the class heirarchy is illustrated in
291 > Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
292 > DirectionalAtom in {\sc OOPSE} have their own names which are
293 > specified in the {\tt .md} file. In contrast, RigidBodies are
294 > denoted by their membership and index inside a particular molecule:
295 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
296 > on the specifics of the simulation). The names of rigid bodies are
297 > generated automatically. For example, the name of the first rigid
298 > body in a DMPC molecule is DMPC\_RB\_0.
299 > \begin{figure}
300 > \centering
301 > \includegraphics[width=\linewidth]{heirarchy.eps}
302 > \caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of
303 > the class heirarchy.
304 > \begin{itemize}
305 > \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
306 > integrators and minimizers.
307 > \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
308 > \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
309 > \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
310 > DirectionalAtom}s which behaves as a single unit.
311 > \end{itemize}
312 > } \label{oopseFig:heirarchy}
313 > \end{figure}
314 >
315 > \section{\label{appendixSection:syntax}Syntax of the Select Command}
316 >
317 > The most general form of the select command is: {\tt select {\it
318 > expression}}. This expression represents an arbitrary set of
319 > StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
320 > composed of either name expressions, index expressions, predefined
321 > sets, user-defined expressions, comparison operators, within
322 > expressions, or logical combinations of the above expression types.
323 > Expressions can be combined using parentheses and the Boolean
324 > operators.
325 >
326 > \subsection{\label{appendixSection:logical}Logical expressions}
327 >
328 > The logical operators allow complex queries to be constructed out of
329 > simpler ones using the standard boolean connectives {\bf and}, {\bf
330 > or}, {\bf not}. Parentheses can be used to alter the precedence of
331 > the operators.
332 >
333 > \begin{center}
334 > \begin{tabular}{|ll|}
335 > \hline
336 > {\bf logical operator} & {\bf equivalent operator}  \\
337 > \hline
338 > and & ``\&'', ``\&\&'' \\
339 > or & ``$|$'', ``$||$'', ``,'' \\
340 > not & ``!''  \\
341 > \hline
342 > \end{tabular}
343 > \end{center}
344 >
345 > \subsection{\label{appendixSection:name}Name expressions}
346 >
347 > \begin{center}
348 > \begin{tabular}{|llp{2in}|}
349 > \hline {\bf type of expression} & {\bf examples} & {\bf translation
350 > of
351 > examples} \\
352 > \hline expression without ``.'' & select DMPC & select all
353 > StuntDoubles
354 > belonging to all DMPC molecules \\
355 > & select C* & select all atoms which have atom types beginning with C
356 > \\
357 > & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
358 > only select the rigid bodies, and not the atoms belonging to them). \\
359 > \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
360 > O\_TIP3P
361 > atoms belonging to TIP3P molecules \\
362 > & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
363 > the first
364 > RigidBody in each DMPC molecule \\
365 > & select DMPC.20 & select the twentieth StuntDouble in each DMPC
366 > molecule \\
367 > \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
368 > select all atoms
369 > belonging to all rigid bodies within all DMPC molecules \\
370 > \hline
371 > \end{tabular}
372 > \end{center}
373 >
374 > \subsection{\label{appendixSection:index}Index expressions}
375 >
376 > \begin{center}
377 > \begin{tabular}{|lp{4in}|}
378 > \hline
379 > {\bf examples} & {\bf translation of examples} \\
380 > \hline
381 > select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
382 > select 20 to 30 & select all of the StuntDoubles belonging to
383 > molecules which have global indices between 20 (inclusive) and 30
384 > (exclusive) \\
385 > \hline
386 > \end{tabular}
387 > \end{center}
388 >
389 > \subsection{\label{appendixSection:predefined}Predefined sets}
390 >
391 > \begin{center}
392 > \begin{tabular}{|ll|}
393 > \hline
394 > {\bf keyword} & {\bf description} \\
395 > \hline
396 > all & select all StuntDoubles \\
397 > none & select none of the StuntDoubles \\
398 > \hline
399 > \end{tabular}
400 > \end{center}
401 >
402 > \subsection{\label{appendixSection:userdefined}User-defined expressions}
403 >
404 > Users can define arbitrary terms to represent groups of
405 > StuntDoubles, and then use the define terms in select commands. The
406 > general form for the define command is: {\bf define {\it term
407 > expression}}. Once defined, the user can specify such terms in
408 > boolean expressions
409 >
410 > {\tt define SSDWATER SSD or SSD1 or SSDRF}
411 >
412 > {\tt select SSDWATER}
413 >
414 > \subsection{\label{appendixSection:comparison}Comparison expressions}
415 >
416 > StuntDoubles can be selected by using comparision operators on their
417 > properties. The general form for the comparison command is: a
418 > property name, followed by a comparision operator and then a number.
419 >
420 > \begin{center}
421 > \begin{tabular}{|l|l|}
422 > \hline
423 > {\bf property} & mass, charge \\
424 > {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
425 > ``$<=$'', ``$!=$'' \\
426 > \hline
427 > \end{tabular}
428 > \end{center}
429 >
430 > For example, the phrase {\tt select mass > 16.0 and charge < -2}
431 > would select StuntDoubles which have mass greater than 16.0 and
432 > charges less than -2.
433 >
434 > \subsection{\label{appendixSection:within}Within expressions}
435 >
436 > The ``within'' keyword allows the user to select all StuntDoubles
437 > within the specified distance (in Angstroms) from a selection,
438 > including the selected atom itself. The general form for within
439 > selection is: {\tt select within(distance, expression)}
440 >
441 > For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
442 > select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
443 > atoms.
444 >
445 >
446 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
447 >
448 > \subsection{\label{appendixSection:StaticProps}StaticProps}
449 >
450 > {\tt StaticProps} can compute properties which are averaged over
451 > some or all of the configurations that are contained within a dump
452 > file. The most common example of a static property that can be
453 > computed is the pair distribution function between atoms of type $A$
454 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
455 > also be used to compute the density distributions of other molecules
456 > in a reference frame {\it fixed to the body-fixed reference frame}
457 > of a selected atom or rigid body.
458 >
459 > There are five seperate radial distribution functions availiable in
460 > OOPSE. Since every radial distrbution function invlove the
461 > calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
462 > -{}-sele2} must be specified to tell StaticProps which bodies to
463 > include in the calculation.
464 >
465 > \begin{description}
466 > \item[{\tt -{}-gofr}] Computes the pair distribution function,
467 > \begin{equation*}
468 > g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
469 > \sum_{j \in B} \delta(r - r_{ij}) \rangle
470 > \end{equation*}
471 > \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
472 > function. The angle is defined by the intermolecular vector
473 > $\vec{r}$ and $z$-axis of DirectionalAtom A,
474 > \begin{equation*}
475 > g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
476 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
477 > \theta_{ij} - \cos \theta)\rangle
478 > \end{equation*}
479 > \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
480 > function. The angle is defined by the $z$-axes of the two
481 > DirectionalAtoms A and B.
482 > \begin{equation*}
483 > g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
484 > \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
485 > \omega_{ij} - \cos \omega)\rangle
486 > \end{equation*}
487 > \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
488 > space $\theta, \omega$ defined by the two angles mentioned above.
489 > \begin{equation*}
490 > g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
491 > \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
492 > \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
493 > \omega)\rangle
494 > \end{equation*}
495 > \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
496 > B in the body frame of particle A. Therefore, {\tt -{}-originsele}
497 > and {\tt -{}-refsele} must be given to define A's internal
498 > coordinate set as the reference frame for the calculation.
499 > \end{description}
500 >
501 > The vectors (and angles) associated with these angular pair
502 > distribution functions are most easily seen in the figure below:
503 >
504 > \begin{figure}
505 > \centering
506 > \includegraphics[width=3in]{definition.eps}
507 > \caption[Definitions of the angles between directional objects]{ \\
508 > Any two directional objects (DirectionalAtoms and RigidBodies) have
509 > a set of two angles ($\theta$, and $\omega$) between the z-axes of
510 > their body-fixed frames.} \label{oopseFig:gofr}
511 > \end{figure}
512 >
513 > Due to the fact that the selected StuntDoubles from two selections
514 > may be overlapped, {\tt StaticProps} performs the calculation in
515 > three stages which are illustrated in
516 > Fig.~\ref{oopseFig:staticPropsProcess}.
517 >
518 > \begin{figure}
519 > \centering
520 > \includegraphics[width=\linewidth]{staticPropsProcess.eps}
521 > \caption[A representation of the three-stage correlations in
522 > \texttt{StaticProps}]{This diagram illustrates three-stage
523 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
524 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
525 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
526 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
527 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
528 > the contrary, the third stage($C$ and $C$) are completely
529 > overlapping} \label{oopseFig:staticPropsProcess}
530 > \end{figure}
531 >
532 > The options available for {\tt StaticProps} are as follows:
533 > \begin{longtable}[c]{|EFG|}
534 > \caption{StaticProps Command-line Options}
535 > \\ \hline
536 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
537 > \endhead
538 > \hline
539 > \endfoot
540 >  -h& {\tt -{}-help}                    &  Print help and exit \\
541 >  -V& {\tt -{}-version}                 &  Print version and exit \\
542 >  -i& {\tt -{}-input}          &  input dump file \\
543 >  -o& {\tt -{}-output}         &  output file name \\
544 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
545 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
546 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
547 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
548 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
549 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
550 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
551 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
552 >    & {\tt -{}-molname}           & molecule name \\
553 >    & {\tt -{}-begin}                & begin internal index \\
554 >    & {\tt -{}-end}                  & end internal index \\
555 > \hline
556 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
557 > \hline
558 >    &  {\tt -{}-gofr}                    &  $g(r)$ \\
559 >    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
560 >    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
561 >    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
562 >    &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
563 >    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
564 >    &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
565 >    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
566 >    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
567 > \end{longtable}
568 >
569 > \subsection{\label{appendixSection:DynamicProps}DynamicProps}
570 >
571 > {\tt DynamicProps} computes time correlation functions from the
572 > configurations stored in a dump file.  Typical examples of time
573 > correlation functions are the mean square displacement and the
574 > velocity autocorrelation functions.   Once again, the selection
575 > syntax can be used to specify the StuntDoubles that will be used for
576 > the calculation.  A general time correlation function can be thought
577 > of as:
578 > \begin{equation}
579 > C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
580 > \end{equation}
581 > where $\vec{u}_A(t)$ is a vector property associated with an atom of
582 > type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
583 > vector property associated with an atom of type $B$ at a different
584 > time $t^{\prime}$.  In most autocorrelation functions, the vector
585 > properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
586 > $B$) are identical, and the three calculations built in to {\tt
587 > DynamicProps} make these assumptions.  It is possible, however, to
588 > make simple modifications to the {\tt DynamicProps} code to allow
589 > the use of {\it cross} time correlation functions (i.e. with
590 > different vectors).  The ability to use two selection scripts to
591 > select different types of atoms is already present in the code.
592 >
593 > For large simulations, the trajectory files can sometimes reach
594 > sizes in excess of several gigabytes. In order to effectively
595 > analyze that amount of data. In order to prevent a situation where
596 > the program runs out of memory due to large trajectories,
597 > \texttt{dynamicProps} will estimate the size of free memory at
598 > first, and determine the number of frames in each block, which
599 > allows the operating system to load two blocks of data
600 > simultaneously without swapping. Upon reading two blocks of the
601 > trajectory, \texttt{dynamicProps} will calculate the time
602 > correlation within the first block and the cross correlations
603 > between the two blocks. This second block is then freed and then
604 > incremented and the process repeated until the end of the
605 > trajectory. Once the end is reached, the first block is freed then
606 > incremented, until all frame pairs have been correlated in time.
607 > This process is illustrated in
608 > Fig.~\ref{oopseFig:dynamicPropsProcess}.
609 >
610 > \begin{figure}
611 > \centering
612 > \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
613 > \caption[A representation of the block correlations in
614 > \texttt{dynamicProps}]{This diagram illustrates block correlations
615 > processing in \texttt{dynamicProps}. The shaded region represents
616 > the self correlation of the block, and the open blocks are read one
617 > at a time and the cross correlations between blocks are calculated.}
618 > \label{oopseFig:dynamicPropsProcess}
619 > \end{figure}
620 >
621 > The options available for DynamicProps are as follows:
622 > \begin{longtable}[c]{|EFG|}
623 > \caption{DynamicProps Command-line Options}
624 > \\ \hline
625 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
626 > \endhead
627 > \hline
628 > \endfoot
629 >  -h& {\tt -{}-help}                   & Print help and exit \\
630 >  -V& {\tt -{}-version}                & Print version and exit \\
631 >  -i& {\tt -{}-input}         & input dump file \\
632 >  -o& {\tt -{}-output}        & output file name \\
633 >    & {\tt -{}-sele1} & select first StuntDouble set \\
634 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
635 > \hline
636 > \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
637 > \hline
638 >  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
639 >  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
640 >  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
641 > \end{longtable}
642 >
643 > \section{\label{appendixSection:tools}Other Useful Utilities}
644 >
645 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
646 >
647 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
648 > which can be opened by other molecular dynamics viewers such as Jmol
649 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
650 > as follows:
651 >
652 >
653 > \begin{longtable}[c]{|EFG|}
654 > \caption{Dump2XYZ Command-line Options}
655 > \\ \hline
656 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
657 > \endhead
658 > \hline
659 > \endfoot
660 >  -h & {\tt -{}-help} &                        Print help and exit \\
661 >  -V & {\tt -{}-version} &                     Print version and exit \\
662 >  -i & {\tt -{}-input}  &             input dump file \\
663 >  -o & {\tt -{}-output} &             output file name \\
664 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
665 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
666 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
667 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
668 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
669 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
670 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
671 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
672 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
673 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
674 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
675 > converted. \\
676 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
677 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
678 > \end{longtable}
679 >
680 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
681 >
682 > {\tt Hydro} can calculate resistance and diffusion tensors at the
683 > center of resistance. Both tensors at the center of diffusion can
684 > also be reported from the program, as well as the coordinates for
685 > the beads which are used to approximate the arbitrary shapes. The
686 > options available for Hydro are as follows:
687 > \begin{longtable}[c]{|EFG|}
688 > \caption{Hydrodynamics Command-line Options}
689 > \\ \hline
690 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
691 > \endhead
692 > \hline
693 > \endfoot
694 >  -h & {\tt -{}-help} &                        Print help and exit \\
695 >  -V & {\tt -{}-version} &                     Print version and exit \\
696 >  -i & {\tt -{}-input}  &             input dump file \\
697 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
698 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
699 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
700 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines