ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2816 by tim, Wed Jun 7 19:51:57 2006 UTC vs.
Revision 2835 by tim, Thu Jun 8 22:39:54 2006 UTC

# Line 118 | Line 118 | The Singleton pattern ensures that only one instance o
118   OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121 < The Singleton pattern ensures that only one instance of a class is
122 < created. All objects that use an instance of that class use the same
123 < instance.
121 > The Singleton pattern not only provides a mechanism to restrict
122 > instantiation of a class to one object, but also provides a global
123 > point of access to the object. Currently implemented as a global
124 > variable, the logging utility which reports error and warning
125 > messages to the console in {\sc OOPSE} is a good candidate for
126 > applying the Singleton pattern to avoid the global namespace
127 > pollution.Although the singleton pattern can be implemented in
128 > various ways  to account for different aspects of the software
129 > designs, such as lifespan control \textit{etc}, we only use the
130 > static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 > is declared as
132 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
133  
134 + class IntegratorFactory {
135 + public:
136 +  static IntegratorFactory*
137 +  getInstance();
138 + protected:
139 +  IntegratorFactory();
140 + private:
141 +  static IntegratorFactory* instance_;
142 + };
143 +
144 + \end{lstlisting}
145 + The corresponding implementation is
146 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
147 +
148 + IntegratorFactory::instance_ = NULL;
149 +
150 + IntegratorFactory* getInstance() {
151 +  if (instance_ == NULL){
152 +    instance_ = new IntegratorFactory;
153 +  }
154 +  return instance_;
155 + }
156 +
157 + \end{lstlisting}
158 + Since constructor is declared as {\tt protected}, a client can not
159 + instantiate {\tt IntegratorFactory} directly. Moreover, since the
160 + member function {\tt getInstance} serves as the only entry of access
161 + to {\tt IntegratorFactory}, this approach fulfills the basic
162 + requirement, a single instance. Another consequence of this approach
163 + is the automatic destruction since static data are destroyed upon
164 + program termination.
165 +
166   \subsection{\label{appendixSection:factoryMethod}Factory Method}
126 The Factory Method pattern is a creational pattern which deals with
127 the problem of creating objects without specifying the exact class
128 of object that will be created. Factory Method solves this problem
129 by defining a separate method for creating the objects, which
130 subclasses can then override to specify the derived type of product
131 that will be created.
167  
168 + Categoried as a creational pattern, the Factory Method pattern deals
169 + with the problem of creating objects without specifying the exact
170 + class of object that will be created. Factory Method is typically
171 + implemented by delegating the creation operation to the subclasses.
172 + {\tt Integrator} class Parameterized Factory pattern where factory
173 + method ({\tt createIntegrator} member function) creates products
174 + based on the identifier (see
175 + List.~\ref{appendixScheme:factoryDeclaration}). If the identifier
176 + has been already registered, the factory method will invoke the
177 + corresponding creator (see List.~\ref{integratorCreator}) which
178 + utilizes the modern C++ template technique to avoid subclassing.
179 + \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of {\tt IntegratorFactory} class.},label={appendixScheme:factoryDeclaration}]
180 +
181 + class IntegratorFactory {
182 + public:
183 +  typedef std::map<string, IntegratorCreator*> CreatorMapType;
184 +
185 +  bool registerIntegrator(IntegratorCreator* creator) {
186 +    return creatorMap_.insert(creator->getIdent(), creator).second;
187 +  }
188 +
189 +  Integrator* createIntegrator(const string& id, SimInfo* info) {
190 +    Integrator* result = NULL;
191 +    CreatorMapType::iterator i = creatorMap_.find(id);
192 +    if (i != creatorMap_.end()) {
193 +      result = (i->second)->create(info);
194 +    }
195 +    return result;
196 +  }
197 +
198 + private:
199 +  CreatorMapType creatorMap_;
200 + };
201 + \end{lstlisting}
202 + \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
203 +
204 + class IntegratorCreator {
205 + public:
206 +    IntegratorCreator(const string& ident) : ident_(ident) {}
207 +
208 +    const string& getIdent() const { return ident_; }
209 +
210 +    virtual Integrator* create(SimInfo* info) const = 0;
211 +
212 + private:
213 +    string ident_;
214 + };
215 +
216 + template<class ConcreteIntegrator>
217 + class IntegratorBuilder : public IntegratorCreator {
218 + public:
219 +  IntegratorBuilder(const string& ident)
220 +                   : IntegratorCreator(ident) {}
221 +  virtual  Integrator* create(SimInfo* info) const {
222 +    return new ConcreteIntegrator(info);
223 +  }
224 + };
225 + \end{lstlisting}
226 +
227   \subsection{\label{appendixSection:visitorPattern}Visitor}
228 +
229   The purpose of the Visitor Pattern is to encapsulate an operation
230 < that you want to perform on the elements of a data structure. In
231 < this way, you can change the operation being performed on a
232 < structure without the need of changing the classes of the elements
233 < that you are operating on.
230 > that you want to perform on the elements. The operation being
231 > performed on a structure can be switched without changing the
232 > interfaces of the elements. In other words, one can add virtual
233 > functions into a set of classes without modifying their interfaces.
234 > Fig.~\ref{appendixFig:visitorUML} demonstrates the structure of
235 > Visitor pattern which is used extensively in {\tt Dump2XYZ}. In
236 > order to convert an OOPSE dump file, a series of distinct and
237 > unrelated operations are performed on different StuntDoubles.
238 > Visitor allows one to keep related operations together by packing
239 > them into one class. {\tt BaseAtomVisitor} is a typical example of
240 > visitor in {\tt Dump2XYZ} program{see
241 > List.~\ref{appendixScheme:visitor}}. In contrast to the operations,
242 > the object structure or element classes rarely change(See
243 > Fig.~\ref{oopseFig:heirarchy} and
244 > List.~\ref{appendixScheme:element}).
245  
246 +
247 + \begin{figure}
248 + \centering
249 + \includegraphics[width=\linewidth]{visitor.eps}
250 + \caption[The UML class diagram of Visitor patten] {The UML class
251 + diagram of Visitor patten.} \label{appendixFig:visitorUML}
252 + \end{figure}
253 +
254 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
255 +
256 + class BaseVisitor{
257 + public:
258 +  virtual void visit(Atom* atom);
259 +  virtual void visit(DirectionalAtom* datom);
260 +  virtual void visit(RigidBody* rb);
261 + };
262 +
263 + class BaseAtomVisitor:public BaseVisitor{ public:
264 +  virtual void visit(Atom* atom);
265 +  virtual void visit(DirectionalAtom* datom);
266 +  virtual void visit(RigidBody* rb);
267 + };
268 +
269 + \end{lstlisting}
270 +
271 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
272 +
273 + class StuntDouble {
274 + public:
275 +  virtual void accept(BaseVisitor* v) = 0;
276 + };
277 +
278 + class Atom: public StuntDouble {
279 + public:
280 +  virtual void accept{BaseVisitor* v*} {
281 +    v->visit(this);
282 +  }
283 + };
284 +
285 + class DirectionalAtom: public Atom {
286 + public:
287 +  virtual void accept{BaseVisitor* v*} {
288 +    v->visit(this);
289 +  }
290 + };
291 +
292 + class RigidBody: public StuntDouble {
293 + public:
294 +  virtual void accept{BaseVisitor* v*} {
295 +    v->visit(this);
296 +  }
297 + };
298 +
299 + \end{lstlisting}
300 +
301   \section{\label{appendixSection:concepts}Concepts}
302  
303   OOPSE manipulates both traditional atoms as well as some objects
304   that {\it behave like atoms}.  These objects can be rigid
305   collections of atoms or atoms which have orientational degrees of
306 < freedom.  Here is a diagram of the class heirarchy:
307 <
306 > freedom.  A diagram of the class heirarchy is illustrated in
307 > Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
308 > DirectionalAtom in {\sc OOPSE} have their own names which are
309 > specified in the {\tt .md} file. In contrast, RigidBodies are
310 > denoted by their membership and index inside a particular molecule:
311 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
312 > on the specifics of the simulation). The names of rigid bodies are
313 > generated automatically. For example, the name of the first rigid
314 > body in a DMPC molecule is DMPC\_RB\_0.
315   %\begin{figure}
316   %\centering
317 < %\includegraphics[width=3in]{heirarchy.eps}
318 < %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
319 < %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
320 < %selection syntax allows the user to select any of the objects that
321 < %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
317 > %\includegraphics[width=\linewidth]{heirarchy.eps}
318 > %\caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of
319 > %the class heirarchy.
320 > %\begin{itemize}
321 > %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
322 > %integrators and minimizers.
323 > %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
324 > %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
325 > %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
326 > %DirectionalAtom}s which behaves as a single unit.
327 > %\end{itemize}
328 > %} \label{oopseFig:heirarchy}
329   %\end{figure}
330  
156 \begin{itemize}
157 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
158 integrators and minimizers.
159 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
160 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
161 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
162 DirectionalAtom}s which behaves as a single unit.
163 \end{itemize}
164
165 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
166 own names which are specified in the {\tt .md} file. In contrast,
167 RigidBodies are denoted by their membership and index inside a
168 particular molecule: [MoleculeName]\_RB\_[index] (the contents
169 inside the brackets depend on the specifics of the simulation). The
170 names of rigid bodies are generated automatically. For example, the
171 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
172
331   \section{\label{appendixSection:syntax}Syntax of the Select Command}
332  
333   The most general form of the select command is: {\tt select {\it
# Line 502 | Line 660 | Dump2XYZ can transform an OOPSE dump file into a xyz f
660  
661   \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
662  
663 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
664 < be opened by other molecular dynamics viewers such as Jmol and
665 < VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
666 < follows:
663 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
664 > which can be opened by other molecular dynamics viewers such as Jmol
665 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
666 > as follows:
667  
668  
669   \begin{longtable}[c]{|EFG|}
# Line 536 | Line 694 | The options available for Hydro are as follows:
694   \end{longtable}
695  
696   \subsection{\label{appendixSection:hydrodynamics}Hydro}
697 < The options available for Hydro are as follows:
697 >
698 > {\tt Hydro} can calculate resistance and diffusion tensors at the
699 > center of resistance. Both tensors at the center of diffusion can
700 > also be reported from the program, as well as the coordinates for
701 > the beads which are used to approximate the arbitrary shapes. The
702 > options available for Hydro are as follows:
703   \begin{longtable}[c]{|EFG|}
704   \caption{Hydrodynamics Command-line Options}
705   \\ \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines