ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2805 by tim, Tue Jun 6 20:33:28 2006 UTC vs.
Revision 2883 by tim, Sun Jun 25 17:39:42 2006 UTC

# Line 1 | Line 1
1   \appendix
2 < \chapter{\label{chapt:appendix}APPENDIX}
2 > \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4 < Designing object-oriented software is hard, and designing reusable
5 < object-oriented scientific software is even harder. Absence of
6 < applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{wilson}. For instance, in the
8 < last 20 years , there are quite a few MD packages that were
4 > The absence of modern software development practices has been a
5 > bottleneck limiting progress in the Scientific Computing
6 > community\cite{Wilson2006}. In the last 20 years , a large number of
7 > few MD packages\cite{Brooks1983, Vincent1995, Kale1999} were
8   developed to solve common MD problems and perform robust simulations
9 < . However, many of the codes are legacy programs that are either
10 < poorly organized or extremely complex. Usually, these packages were
11 < contributed by scientists without official computer science
12 < training. The development of most MD applications are lack of strong
13 < coordination to enforce design and programming guidelines. Moreover,
14 < most MD programs also suffer from missing design and implement
15 < documents which is crucial to the maintenance and extensibility.
9 > . Most of these are commercial programs that are either poorly
10 > written or extremely complicated to use correctly. This situation
11 > prevents researchers from reusing or extending those packages to do
12 > cutting-edge research effectively. In the process of studying
13 > structural and dynamic processes in condensed phase systems like
14 > biological membranes and nanoparticles, we developed an open source
15 > Object-Oriented Parallel Simulation Engine ({\sc OOPSE}). This new
16 > molecular dynamics package has some unique features
17 > \begin{enumerate}
18 >  \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
19 > atom types (transition metals, point dipoles, sticky potentials,
20 > Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
21 > degrees of freedom), as well as rigid bodies.
22 >  \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
23 > Beowulf clusters to obtain very efficient parallelism.
24 >  \item {\sc OOPSE} integrates the equations of motion using advanced methods for
25 > orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
26 > ensembles.
27 >  \item {\sc OOPSE} can carry out simulations on metallic systems using the
28 > Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
29 >  \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
30 >  \item  {\sc OOPSE} can simulate systems containing the extremely efficient
31 > extended-Soft Sticky Dipole (SSD/E) model for water.
32 > \end{enumerate}
33  
34 < \section{\label{appendixSection:desginPattern}Design Pattern}
34 > \section{\label{appendixSection:architecture }Architecture}
35  
36 + Mainly written by C++ and Fortran90, {\sc OOPSE} uses C++ Standard
37 + Template Library (STL) and fortran modules as a foundation. As an
38 + extensive set of the STL and Fortran90 modules, {\sc Base Classes}
39 + provide generic implementations of mathematical objects (e.g.,
40 + matrices, vectors, polynomials, random number generators) and
41 + advanced data structures and algorithms(e.g., tuple, bitset, generic
42 + data and string manipulation). The molecular data structures for the
43 + representation of atoms, bonds, bends, torsions, rigid bodies and
44 + molecules \textit{etc} are contained in the {\sc Kernel} which is
45 + implemented with {\sc Base Classes} and are carefully designed to
46 + provide maximum extensibility and flexibility. The functionality
47 + required for applications is provided by the third layer which
48 + contains Input/Output, Molecular Mechanics and Structure modules.
49 + The Input/Output module not only implements general methods for file
50 + handling, but also defines a generic force field interface. Another
51 + important component of Input/Output module is the parser for
52 + meta-data files, which has been implemented using the ANother Tool
53 + for Language Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax.
54 + The Molecular Mechanics module consists of energy minimization and a
55 + wide varieties of integration methods(see
56 + Chap.~\ref{chapt:methodology}). The structure module contains a
57 + flexible and powerful selection library which syntax is elaborated
58 + in Sec.~\ref{appendixSection:syntax}. The top layer is made of the
59 + main program of the package, \texttt{oopse} and it corresponding
60 + parallel version \texttt{oopse\_MPI}, as well as other useful
61 + utilities, such as \texttt{StatProps} (see
62 + Sec.~\ref{appendixSection:StaticProps}), \texttt{DynamicProps} (see
63 + Sec.~\ref{appendixSection:DynamicProps}), \texttt{Dump2XYZ} (see
64 + Sec.~\ref{appendixSection:Dump2XYZ}), \texttt{Hydro} (see
65 + Sec.~\ref{appendixSection:hydrodynamics}) \textit{etc}.
66 +
67 + \begin{figure}
68 + \centering
69 + \includegraphics[width=\linewidth]{architecture.eps}
70 + \caption[The architecture of {\sc OOPSE}] {Overview of the structure
71 + of {\sc OOPSE}} \label{appendixFig:architecture}
72 + \end{figure}
73 +
74 + \section{\label{appendixSection:desginPattern}Design Patterns}
75 +
76   Design patterns are optimal solutions to commonly-occurring problems
77   in software design. Although originated as an architectural concept
78 < for buildings and towns by Christopher Alexander \cite{alexander},
79 < software patterns first became popular with the wide acceptance of
80 < the book, Design Patterns: Elements of Reusable Object-Oriented
81 < Software \cite{gamma94}. Patterns reflect the experience, knowledge
82 < and insights of developers who have successfully used these patterns
83 < in their own work. Patterns are reusable. They provide a ready-made
84 < solution that can be adapted to different problems as necessary.
85 < Pattern are expressive. they provide a common vocabulary of
86 < solutions that can express large solutions succinctly.
78 > for buildings and towns by Christopher Alexander
79 > \cite{Alexander1987}, software patterns first became popular with
80 > the wide acceptance of the book, Design Patterns: Elements of
81 > Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
82 > the experience, knowledge and insights of developers who have
83 > successfully used these patterns in their own work. Patterns are
84 > reusable. They provide a ready-made solution that can be adapted to
85 > different problems as necessary. As one of the latest advanced
86 > techniques to emerge from object-oriented community, design patterns
87 > were applied in some of the modern scientific software applications,
88 > such as JMol, {\sc OOPSE}\cite{Meineke2005} and
89 > PROTOMOL\cite{Matthey2004} \textit{etc}. The following sections
90 > enumerates some of the patterns used in {\sc OOPSE}.
91  
92 < Patterns are usually described using a format that includes the
33 < following information:
34 < \begin{enumerate}
35 <  \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
36 <  discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
37 <  in the literature. In this case it is common practice to document these nicknames or synonyms under
38 <  the heading of \emph{Aliases} or \emph{Also Known As}.
39 <  \item The \emph{motivation} or \emph{context} that this pattern applies
40 <  to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
41 <  \item The \emph{solution} to the problem that the pattern
42 <  addresses. It describes how to construct the necessary work products. The description may include
43 <  pictures, diagrams and prose which identify the pattern's structure, its participants, and their
44 <  collaborations, to show how the problem is solved.
45 <  \item The \emph{consequences} of using the given solution to solve a
46 <  problem, both positive and negative.
47 < \end{enumerate}
92 > \subsection{\label{appendixSection:singleton}Singletons}
93  
94 < As one of the latest advanced techniques emerged from
95 < object-oriented community, design patterns were applied in some of
96 < the modern scientific software applications, such as JMol, OOPSE
97 < \cite{Meineke05} and PROTOMOL \cite{Matthey05} \textit{etc}.
94 > The Singleton pattern not only provides a mechanism to restrict
95 > instantiation of a class to one object, but also provides a global
96 > point of access to the object. Although the singleton pattern can be
97 > implemented in various ways  to account for different aspects of the
98 > software designs, such as lifespan control \textit{etc}, we only use
99 > the static data approach in {\sc OOPSE}. The declaration and
100 > implementation of IntegratorFactory class are given by declared in
101 > List.~\ref{appendixScheme:singletonDeclaration} and
102 > Scheme.~\ref{appendixScheme:singletonImplementation} respectively.
103 > Since the constructor is declared as protected, a client can not
104 > instantiate IntegratorFactory directly. Moreover, since the member
105 > function getInstance serves as the only entry of access to
106 > IntegratorFactory, this approach fulfills the basic requirement, a
107 > single instance. Another consequence of this approach is the
108 > automatic destruction since static data are destroyed upon program
109 > termination.
110  
111 < \subsection{\label{appendixSection:singleton}Singleton}
55 < The Singleton pattern ensures that only one instance of a class is
56 < created. All objects that use an instance of that class use the same
57 < instance.
111 > \subsection{\label{appendixSection:factoryMethod}Factory Methods}
112  
113 < \subsection{\label{appendixSection:factoryMethod}Factory Method}
60 < The Factory Method pattern is a creational pattern which deals with
113 > The Factory Method pattern is a creational pattern and deals with
114   the problem of creating objects without specifying the exact class
115 < of object that will be created. Factory Method solves this problem
116 < by defining a separate method for creating the objects, which
117 < subclasses can then override to specify the derived type of product
118 < that will be created.
115 > of object that will be created. Factory method is typically
116 > implemented by delegating the creation operation to the subclasses.
117 > One of the most popular Factory pattern is Parameterized Factory
118 > pattern which creates products based on their identifiers (see
119 > Scheme.~\ref{appendixScheme:factoryDeclaration}). If the identifier
120 > has been already registered, the factory method will invoke the
121 > corresponding creator (see
122 > Scheme.~\ref{appendixScheme:integratorCreator}) which utilizes the
123 > modern C++ template technique to avoid excess subclassing.
124  
67
125   \subsection{\label{appendixSection:visitorPattern}Visitor}
69 The purpose of the Visitor Pattern is to encapsulate an operation
70 that you want to perform on the elements of a data structure. In
71 this way, you can change the operation being performed on a
72 structure without the need of changing the classes of the elements
73 that you are operating on.
126  
127 + The visitor pattern is designed to decouple the data structure and
128 + algorithms used upon them by collecting related operation from
129 + element classes into other visitor classes, which is equivalent to
130 + adding virtual functions into a set of classes without modifying
131 + their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
132 + structure of a Visitor pattern which is used extensively in {\tt
133 + Dump2XYZ}. In order to convert an OOPSE dump file, a series of
134 + distinct operations are performed on different StuntDoubles (See the
135 + class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
136 + in Scheme.~\ref{appendixScheme:element}). Since the hierarchies
137 + remain stable, it is easy to define a visit operation (see
138 + Scheme.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
139 + Note that using Composite pattern\cite{Gamma1994}, CompositeVisitor
140 + manages a priority visitor list and handles the execution of every
141 + visitor in the priority list on different StuntDoubles.
142  
143 < \subsection{\label{appendixSection:templateMethod}Template Method}
143 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
144  
145 < \section{\label{appendixSection:analysisFramework}Analysis Framework}
145 > class IntegratorFactory { public:
146 >  static IntegratorFactory* getInstance(); protected:
147 >  IntegratorFactory();
148 > private:
149 >  static IntegratorFactory* instance_;
150 > };
151  
152 < \section{\label{appendixSection:concepts}Concepts}
152 > \end{lstlisting}
153  
154 < OOPSE manipulates both traditional atoms as well as some objects
155 < that {\it behave like atoms}.  These objects can be rigid
156 < collections of atoms or atoms which have orientational degrees of
157 < freedom.  Here is a diagram of the class heirarchy:
154 > \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
155 >
156 > IntegratorFactory::instance_ = NULL;
157 >
158 > IntegratorFactory* getInstance() {
159 >  if (instance_ == NULL){
160 >    instance_ = new IntegratorFactory;
161 >  }
162 >  return instance_;
163 > }
164 >
165 > \end{lstlisting}
166 >
167 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
168 >
169 > class IntegratorFactory { public:
170 >  typedef std::map<string, IntegratorCreator*> CreatorMapType;
171 >
172 >  bool registerIntegrator(IntegratorCreator* creator) {
173 >    return creatorMap_.insert(creator->getIdent(), creator).second;
174 >  }
175 >
176 >  Integrator* createIntegrator(const string& id, SimInfo* info) {
177 >    Integrator* result = NULL;
178 >    CreatorMapType::iterator i = creatorMap_.find(id);
179 >    if (i != creatorMap_.end()) {
180 >      result = (i->second)->create(info);
181 >    }
182 >    return result;
183 >  }
184 >
185 > private:
186 >  CreatorMapType creatorMap_;
187 > };
188 > \end{lstlisting}
189 >
190 > \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
191 >
192 > class IntegratorCreator {
193 >  public:
194 >    IntegratorCreator(const string& ident) : ident_(ident) {}
195 >
196 >    const string& getIdent() const { return ident_; }
197 >
198 >    virtual Integrator* create(SimInfo* info) const = 0;
199 >
200 > private:
201 >    string ident_;
202 > };
203 >
204 > template<class ConcreteIntegrator> class IntegratorBuilder : public
205 > IntegratorCreator {
206 >  public:
207 >    IntegratorBuilder(const string& ident)
208 >                     : IntegratorCreator(ident) {}
209 >    virtual  Integrator* create(SimInfo* info) const {
210 >      return new ConcreteIntegrator(info);
211 >    }
212 > };
213 > \end{lstlisting}
214 >
215 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
216 >
217 > class StuntDouble {
218 >  public:
219 >    virtual void accept(BaseVisitor* v) = 0;
220 > };
221 >
222 > class Atom: public StuntDouble {
223 >  public:
224 >    virtual void accept{BaseVisitor* v*} {
225 >      v->visit(this);
226 >    }
227 > };
228 >
229 > class DirectionalAtom: public Atom {
230 >  public:
231 >    virtual void accept{BaseVisitor* v*} {
232 >      v->visit(this);
233 >    }
234 > };
235 >
236 > class RigidBody: public StuntDouble {
237 >  public:
238 >    virtual void accept{BaseVisitor* v*} {
239 >      v->visit(this);
240 >    }
241 > };
242 >
243 > \end{lstlisting}
244 >
245 > \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
246 >
247 > class BaseVisitor{
248 >  public:
249 >    virtual void visit(Atom* atom);
250 >    virtual void visit(DirectionalAtom* datom);
251 >    virtual void visit(RigidBody* rb);
252 > };
253 >
254 > class BaseAtomVisitor:public BaseVisitor{
255 >  public:
256 >    virtual void visit(Atom* atom);
257 >    virtual void visit(DirectionalAtom* datom);
258 >    virtual void visit(RigidBody* rb);
259 > };
260  
261 + class CompositeVisitor: public BaseVisitor {
262 +  public:
263 +  typedef list<pair<BaseVisitor*, int> > VistorListType;
264 +  typedef VistorListType::iterator VisitorListIterator;
265 +  virtual void visit(Atom* atom) {
266 +    VisitorListIterator i;
267 +    BaseVisitor* curVisitor;
268 +    for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
269 +      atom->accept(*i);
270 +    }
271 +  }
272 +
273 +  virtual void visit(DirectionalAtom* datom) {
274 +    VisitorListIterator i;
275 +    BaseVisitor* curVisitor;
276 +    for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
277 +      atom->accept(*i);
278 +    }
279 +  }
280 +
281 +  virtual void visit(RigidBody* rb) {
282 +    VisitorListIterator i;
283 +    std::vector<Atom*> myAtoms;
284 +    std::vector<Atom*>::iterator ai;
285 +    myAtoms = rb->getAtoms();
286 +    for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
287 +      rb->accept(*i);
288 +      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
289 +        (*ai)->accept(*i);
290 +      }
291 +    }
292 +
293 +  void addVisitor(BaseVisitor* v, int priority);
294 +  protected:
295 +    VistorListType visitorList;
296 + };
297 + \end{lstlisting}
298 +
299   \begin{figure}
300   \centering
301 < \includegraphics[width=3in]{heirarchy.eps}
302 < \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
303 < The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
92 < selection syntax allows the user to select any of the objects that
93 < are descended from a StuntDouble.} \label{oopseFig:heirarchy}
301 > \includegraphics[width=\linewidth]{visitor.eps}
302 > \caption[The UML class diagram of Visitor patten] {The UML class
303 > diagram of Visitor patten.} \label{appendixFig:visitorUML}
304   \end{figure}
305  
306 + \begin{figure}
307 + \centering
308 + \includegraphics[width=\linewidth]{hierarchy.eps}
309 + \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
310 + the class hierarchy. Objects below others on the diagram inherit
311 + data structures and functions from their parent classes above them.}
312 + \label{oopseFig:hierarchy}
313 + \end{figure}
314 +
315 + \section{\label{appendixSection:concepts}Concepts}
316 +
317 + OOPSE manipulates both traditional atoms as well as some objects
318 + that {\it behave like atoms}.  These objects can be rigid
319 + collections of atoms or atoms which have orientational degrees of
320 + freedom.  A diagram of the class hierarchy is illustrated in
321 + Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
322 + DirectionalAtom in {\sc OOPSE} have their own names which are
323 + specified in the meta data file. In contrast, RigidBodies are
324 + denoted by their membership and index inside a particular molecule:
325 + [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
326 + on the specifics of the simulation). The names of rigid bodies are
327 + generated automatically. For example, the name of the first rigid
328 + body in a DMPC molecule is DMPC\_RB\_0.
329   \begin{itemize}
330   \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
331   integrators and minimizers.
# Line 102 | Line 335 | Every Molecule, Atom and DirectionalAtom in {\sc oopse
335   DirectionalAtom}s which behaves as a single unit.
336   \end{itemize}
337  
105 Every Molecule, Atom and DirectionalAtom in {\sc oopse} have their
106 own names which are specified in the {\tt .md} file. In contrast,
107 RigidBodies are denoted by their membership and index inside a
108 particular molecule: [MoleculeName]\_RB\_[index] (the contents
109 inside the brackets depend on the specifics of the simulation). The
110 names of rigid bodies are generated automatically. For example, the
111 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
112
338   \section{\label{appendixSection:syntax}Syntax of the Select Command}
339  
340 < The most general form of the select command is: {\tt select {\it
341 < expression}}
340 > {\sc OOPSE} provides a powerful selection utility to select
341 > StuntDoubles. The most general form of the select command is:
342  
343 + {\tt select {\it expression}}.
344 +
345   This expression represents an arbitrary set of StuntDoubles (Atoms
346 < or RigidBodies) in {\sc oopse}. Expressions are composed of either
346 > or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
347   name expressions, index expressions, predefined sets, user-defined
348   expressions, comparison operators, within expressions, or logical
349   combinations of the above expression types. Expressions can be
# Line 203 | Line 430 | expression}}
430   Users can define arbitrary terms to represent groups of
431   StuntDoubles, and then use the define terms in select commands. The
432   general form for the define command is: {\bf define {\it term
433 < expression}}
433 > expression}}. Once defined, the user can specify such terms in
434 > boolean expressions
435  
208 Once defined, the user can specify such terms in boolean expressions
209
436   {\tt define SSDWATER SSD or SSD1 or SSDRF}
437  
438   {\tt select SSDWATER}
# Line 242 | Line 468 | atoms.
468   select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
469   atoms.
470  
245 \section{\label{appendixSection:tools}Tools which use the selection command}
471  
472 < \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
472 > \section{\label{appendixSection:analysisFramework}Analysis Framework}
473  
249 Dump2XYZ can transform an OOPSE dump file into a xyz file which can
250 be opened by other molecular dynamics viewers such as Jmol and VMD.
251 The options available for Dump2XYZ are as follows:
252
253
254 \begin{longtable}[c]{|EFG|}
255 \caption{Dump2XYZ Command-line Options}
256 \\ \hline
257 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
258 \endhead
259 \hline
260 \endfoot
261  -h & {\tt -{}-help} &                        Print help and exit \\
262  -V & {\tt -{}-version} &                     Print version and exit \\
263  -i & {\tt -{}-input=filename}  &             input dump file \\
264  -o & {\tt -{}-output=filename} &             output file name \\
265  -n & {\tt -{}-frame=INT}   &                 print every n frame  (default=`1') \\
266  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
267  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
268  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
269  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
270  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
271  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
272     & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
273     & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
274     &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
275  -s & {\tt -{}-selection=selection script} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
276 converted. \\
277     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
278     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
279 \end{longtable}
280
281
474   \subsection{\label{appendixSection:StaticProps}StaticProps}
475  
476   {\tt StaticProps} can compute properties which are averaged over
477   some or all of the configurations that are contained within a dump
478   file. The most common example of a static property that can be
479   computed is the pair distribution function between atoms of type $A$
480 < and other atoms of type $B$, $g_{AB}(r)$.  StaticProps can also be
481 < used to compute the density distributions of other molecules in a
482 < reference frame {\it fixed to the body-fixed reference frame} of a
483 < selected atom or rigid body.
480 > and other atoms of type $B$, $g_{AB}(r)$.  {\tt StaticProps} can
481 > also be used to compute the density distributions of other molecules
482 > in a reference frame {\it fixed to the body-fixed reference frame}
483 > of a selected atom or rigid body. Due to the fact that the selected
484 > StuntDoubles from two selections may be overlapped, {\tt
485 > StaticProps} performs the calculation in three stages which are
486 > illustrated in Fig.~\ref{oopseFig:staticPropsProcess}.
487 >
488 > \begin{figure}
489 > \centering
490 > \includegraphics[width=\linewidth]{staticPropsProcess.eps}
491 > \caption[A representation of the three-stage correlations in
492 > \texttt{StaticProps}]{This diagram illustrates three-stage
493 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
494 > numbers of selected StuntDobules from {\tt -{}-sele1} and {\tt
495 > -{}-sele2} respectively, while $C$ is the number of StuntDobules
496 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
497 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
498 > the contrary, the third stage($C$ and $C$) are completely
499 > overlapping} \label{oopseFig:staticPropsProcess}
500 > \end{figure}
501  
502 + \begin{figure}
503 + \centering
504 + \includegraphics[width=3in]{definition.eps}
505 + \caption[Definitions of the angles between directional objects]{Any
506 + two directional objects (DirectionalAtoms and RigidBodies) have a
507 + set of two angles ($\theta$, and $\omega$) between the z-axes of
508 + their body-fixed frames.} \label{oopseFig:gofr}
509 + \end{figure}
510 +
511   There are five seperate radial distribution functions availiable in
512   OOPSE. Since every radial distrbution function invlove the
513   calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
# Line 333 | Line 551 | distribution functions are most easily seen in the fig
551   \end{description}
552  
553   The vectors (and angles) associated with these angular pair
554 < distribution functions are most easily seen in the figure below:
554 > distribution functions are most easily seen in
555 > Fig.~\ref{oopseFig:gofr}.
556  
338 \begin{figure}
339 \centering
340 \includegraphics[width=3in]{definition.eps}
341 \caption[Definitions of the angles between directional objects]{ \\
342 Any two directional objects (DirectionalAtoms and RigidBodies) have
343 a set of two angles ($\theta$, and $\omega$) between the z-axes of
344 their body-fixed frames.} \label{oopseFig:gofr}
345 \end{figure}
346
557   The options available for {\tt StaticProps} are as follows:
558   \begin{longtable}[c]{|EFG|}
559   \caption{StaticProps Command-line Options}
# Line 354 | Line 564 | The options available for {\tt StaticProps} are as fol
564   \endfoot
565    -h& {\tt -{}-help}                    &  Print help and exit \\
566    -V& {\tt -{}-version}                 &  Print version and exit \\
567 <  -i& {\tt -{}-input=filename}          &  input dump file \\
568 <  -o& {\tt -{}-output=filename}         &  output file name \\
569 <  -n& {\tt -{}-step=INT}                &  process every n frame  (default=`1') \\
570 <  -r& {\tt -{}-nrbins=INT}              &  number of bins for distance  (default=`100') \\
571 <  -a& {\tt -{}-nanglebins=INT}          &  number of bins for cos(angle)  (default= `50') \\
572 <  -l& {\tt -{}-length=DOUBLE}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
573 <    & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
574 <    & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
575 <    & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
576 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
577 <    & {\tt -{}-molname=STRING}           & molecule name \\
578 <    & {\tt -{}-begin=INT}                & begin internal index \\
579 <    & {\tt -{}-end=INT}                  & end internal index \\
567 >  -i& {\tt -{}-input}          &  input dump file \\
568 >  -o& {\tt -{}-output}         &  output file name \\
569 >  -n& {\tt -{}-step}                &  process every n frame  (default=`1') \\
570 >  -r& {\tt -{}-nrbins}              &  number of bins for distance  (default=`100') \\
571 >  -a& {\tt -{}-nanglebins}          &  number of bins for cos(angle)  (default= `50') \\
572 >  -l& {\tt -{}-length}           &  maximum length (Defaults to 1/2 smallest length of first frame) \\
573 >    & {\tt -{}-sele1}   & select the first StuntDouble set \\
574 >    & {\tt -{}-sele2}   & select the second StuntDouble set \\
575 >    & {\tt -{}-sele3}   & select the third StuntDouble set \\
576 >    & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
577 >    & {\tt -{}-molname}           & molecule name \\
578 >    & {\tt -{}-begin}                & begin internal index \\
579 >    & {\tt -{}-end}                  & end internal index \\
580   \hline
581   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
582   \hline
# Line 405 | Line 615 | The options available for DynamicProps are as follows:
615   different vectors).  The ability to use two selection scripts to
616   select different types of atoms is already present in the code.
617  
618 + For large simulations, the trajectory files can sometimes reach
619 + sizes in excess of several gigabytes. In order to prevent a
620 + situation where the program runs out of memory due to large
621 + trajectories, \texttt{dynamicProps} will first estimate the size of
622 + free memory, and determine the number of frames in each block, which
623 + will allow the operating system to load two blocks of data
624 + simultaneously without swapping. Upon reading two blocks of the
625 + trajectory, \texttt{dynamicProps} will calculate the time
626 + correlation within the first block and the cross correlations
627 + between the two blocks. This second block is then freed and then
628 + incremented and the process repeated until the end of the
629 + trajectory. Once the end is reached, the first block is freed then
630 + incremented, until all frame pairs have been correlated in time.
631 + This process is illustrated in
632 + Fig.~\ref{oopseFig:dynamicPropsProcess}.
633 +
634 + \begin{figure}
635 + \centering
636 + \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
637 + \caption[A representation of the block correlations in
638 + \texttt{dynamicProps}]{This diagram illustrates block correlations
639 + processing in \texttt{dynamicProps}. The shaded region represents
640 + the self correlation of the block, and the open blocks are read one
641 + at a time and the cross correlations between blocks are calculated.}
642 + \label{oopseFig:dynamicPropsProcess}
643 + \end{figure}
644 +
645   The options available for DynamicProps are as follows:
646   \begin{longtable}[c]{|EFG|}
647   \caption{DynamicProps Command-line Options}
# Line 415 | Line 652 | The options available for DynamicProps are as follows:
652   \endfoot
653    -h& {\tt -{}-help}                   & Print help and exit \\
654    -V& {\tt -{}-version}                & Print version and exit \\
655 <  -i& {\tt -{}-input=filename}         & input dump file \\
656 <  -o& {\tt -{}-output=filename}        & output file name \\
657 <    & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
658 <    & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
655 >  -i& {\tt -{}-input}         & input dump file \\
656 >  -o& {\tt -{}-output}        & output file name \\
657 >    & {\tt -{}-sele1} & select first StuntDouble set \\
658 >    & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
659   \hline
660   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
661   \hline
# Line 427 | Line 664 | The options available for DynamicProps are as follows:
664    -d& {\tt -{}-dcorr}                  & compute dipole correlation function
665   \end{longtable}
666  
667 < \subsection{\label{appendixSection:hydrodynamics}Hydrodynamics}
667 > \section{\label{appendixSection:tools}Other Useful Utilities}
668 >
669 > \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
670 >
671 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
672 > which can be opened by other molecular dynamics viewers such as Jmol
673 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
674 > as follows:
675 >
676 >
677 > \begin{longtable}[c]{|EFG|}
678 > \caption{Dump2XYZ Command-line Options}
679 > \\ \hline
680 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
681 > \endhead
682 > \hline
683 > \endfoot
684 >  -h & {\tt -{}-help} &                        Print help and exit \\
685 >  -V & {\tt -{}-version} &                     Print version and exit \\
686 >  -i & {\tt -{}-input}  &             input dump file \\
687 >  -o & {\tt -{}-output} &             output file name \\
688 >  -n & {\tt -{}-frame}   &                 print every n frame  (default=`1') \\
689 >  -w & {\tt -{}-water}       &                 skip the the waters  (default=off) \\
690 >  -m & {\tt -{}-periodicBox} &                 map to the periodic box  (default=off)\\
691 >  -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
692 >  -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
693 >  -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
694 >  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
695 >     & {\tt -{}-repeatX}  &                 The number of images to repeat in the x direction  (default=`0') \\
696 >     & {\tt -{}-repeatY} &                 The number of images to repeat in the y direction  (default=`0') \\
697 >     &  {\tt -{}-repeatZ}  &                The number of images to repeat in the z direction  (default=`0') \\
698 >  -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
699 > converted. \\
700 >     & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
701 >     & {\tt -{}-refsele} &  In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
702 > \end{longtable}
703 >
704 > \subsection{\label{appendixSection:hydrodynamics}Hydro}
705 >
706 > {\tt Hydro} can calculate resistance and diffusion tensors at the
707 > center of resistance. Both tensors at the center of diffusion can
708 > also be reported from the program, as well as the coordinates for
709 > the beads which are used to approximate the arbitrary shapes. The
710 > options available for Hydro are as follows:
711 > \begin{longtable}[c]{|EFG|}
712 > \caption{Hydrodynamics Command-line Options}
713 > \\ \hline
714 > {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
715 > \endhead
716 > \hline
717 > \endfoot
718 >  -h & {\tt -{}-help} &                        Print help and exit \\
719 >  -V & {\tt -{}-version} &                     Print version and exit \\
720 >  -i & {\tt -{}-input}  &             input dump file \\
721 >  -o & {\tt -{}-output} &             output file prefix  (default=`hydro') \\
722 >  -b & {\tt -{}-beads}  &                   generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
723 >     & {\tt -{}-model}  &                 hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
724 > \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines