ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2821
Committed: Thu Jun 8 06:39:37 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31388 byte(s)
Log Message:
adding pattern

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern not only provides a mechanism to restrict
122 instantiation of a class to one object, but also provides a global
123 point of access to the object. Currently implemented as a global
124 variable, the logging utility which reports error and warning
125 messages to the console in {\sc OOPSE} is a good candidate for
126 applying the Singleton pattern to avoid the global namespace
127 pollution.Although the singleton pattern can be implemented in
128 various ways to account for different aspects of the software
129 designs, such as lifespan control \textit{etc}, we only use the
130 static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 is declared as
132 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133
134 class IntegratorFactory {
135 public:
136 static IntegratorFactory* getInstance();
137 protected:
138 IntegratorFactory();
139 private:
140 static IntegratorFactory* instance_;
141 };
142 \end{lstlisting}
143 The corresponding implementation is
144 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145
146 IntegratorFactory::instance_ = NULL;
147
148 IntegratorFactory* getInstance() {
149 if (instance_ == NULL){
150 instance_ = new IntegratorFactory;
151 }
152 return instance_;
153 }
154 \end{lstlisting}
155 Since constructor is declared as {\tt protected}, a client can not
156 instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 member function {\tt getInstance} serves as the only entry of access
158 to {\tt IntegratorFactory}, this approach fulfills the basic
159 requirement, a single instance. Another consequence of this approach
160 is the automatic destruction since static data are destroyed upon
161 program termination.
162
163 \subsection{\label{appendixSection:factoryMethod}Factory Method}
164
165 Categoried as a creational pattern, the Factory Method pattern deals
166 with the problem of creating objects without specifying the exact
167 class of object that will be created. Factory Method is typically
168 implemented by delegating the creation operation to the subclasses.
169 \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
170 class IntegratorCreator;
171 class IntegratorFactory {
172 public:
173 typedef std::map<std::string, IntegratorCreator*> CreatorMapType;
174
175 /**
176 * Registers a creator with a type identifier
177 * @return true if registration is successful, otherwise return false
178 * @id the identification of the concrete object
179 * @creator the object responsible to create the concrete object
180 */
181 bool registerIntegrator(IntegratorCreator* creator);
182
183 /**
184 * Looks up the type identifier in the internal map. If it is found, it invokes the
185 * corresponding creator for the type identifier and returns its result.
186 * @return a pointer of the concrete object, return NULL if no creator is registed for
187 * creating this concrete object
188 * @param id the identification of the concrete object
189 */
190 Integrator* createIntegrator(const std::string& id, SimInfo* info);
191
192 private:
193 CreatorMapType creatorMap_;
194 };
195 \end{lstlisting}
196
197 \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
198 bool IntegratorFactory::unregisterIntegrator(const std::string& id) {
199 return creatorMap_.erase(id) == 1;
200 }
201
202 Integrator* IntegratorFactory::createIntegrator(const std::string& id, SimInfo* info) {
203 CreatorMapType::iterator i = creatorMap_.find(id);
204 if (i != creatorMap_.end()) {
205 //invoke functor to create object
206 return (i->second)->create(info);
207 } else {
208 return NULL;
209 }
210 }
211 \end{lstlisting}
212
213 \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
214
215 class IntegratorCreator {
216 public:
217 IntegratorCreator(const std::string& ident) : ident_(ident) {}
218 virtual ~IntegratorCreator() {}
219 const std::string& getIdent() const { return ident_; }
220
221 virtual Integrator* create(SimInfo* info) const = 0;
222
223 private:
224 std::string ident_;
225 };
226
227 template<class ConcreteIntegrator>
228 class IntegratorBuilder : public IntegratorCreator {
229 public:
230 IntegratorBuilder(const std::string& ident) : IntegratorCreator(ident) {}
231 virtual Integrator* create(SimInfo* info) const {return new ConcreteIntegrator(info);}
232 };
233 \end{lstlisting}
234
235 \subsection{\label{appendixSection:visitorPattern}Visitor}
236
237 The purpose of the Visitor Pattern is to encapsulate an operation
238 that you want to perform on the elements of a data structure. In
239 this way, you can change the operation being performed on a
240 structure without the need of changing the class heirarchy of the
241 elements that you are operating on.
242
243 \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
244 class BaseVisitor{
245 public:
246 virtual void visit(Atom* atom);
247 virtual void visit(DirectionalAtom* datom);
248 virtual void visit(RigidBody* rb);
249 };
250 \end{lstlisting}
251 \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
252 class StuntDouble {
253 public:
254 virtual void accept(BaseVisitor* v) = 0;
255 };
256
257 class Atom: public StuntDouble {
258 public:
259 virtual void accept{BaseVisitor* v*} {v->visit(this);}
260 };
261
262 class DirectionalAtom: public Atom {
263 public:
264 virtual void accept{BaseVisitor* v*} {v->visit(this);}
265 };
266
267 class RigidBody: public StuntDouble {
268 public:
269 virtual void accept{BaseVisitor* v*} {v->visit(this);}
270 };
271
272 \end{lstlisting}
273 \section{\label{appendixSection:concepts}Concepts}
274
275 OOPSE manipulates both traditional atoms as well as some objects
276 that {\it behave like atoms}. These objects can be rigid
277 collections of atoms or atoms which have orientational degrees of
278 freedom. Here is a diagram of the class heirarchy:
279
280 %\begin{figure}
281 %\centering
282 %\includegraphics[width=3in]{heirarchy.eps}
283 %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
284 %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
285 %selection syntax allows the user to select any of the objects that
286 %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
287 %\end{figure}
288
289 \begin{itemize}
290 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
291 integrators and minimizers.
292 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
293 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
294 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
295 DirectionalAtom}s which behaves as a single unit.
296 \end{itemize}
297
298 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
299 own names which are specified in the {\tt .md} file. In contrast,
300 RigidBodies are denoted by their membership and index inside a
301 particular molecule: [MoleculeName]\_RB\_[index] (the contents
302 inside the brackets depend on the specifics of the simulation). The
303 names of rigid bodies are generated automatically. For example, the
304 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
305
306 \section{\label{appendixSection:syntax}Syntax of the Select Command}
307
308 The most general form of the select command is: {\tt select {\it
309 expression}}. This expression represents an arbitrary set of
310 StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
311 composed of either name expressions, index expressions, predefined
312 sets, user-defined expressions, comparison operators, within
313 expressions, or logical combinations of the above expression types.
314 Expressions can be combined using parentheses and the Boolean
315 operators.
316
317 \subsection{\label{appendixSection:logical}Logical expressions}
318
319 The logical operators allow complex queries to be constructed out of
320 simpler ones using the standard boolean connectives {\bf and}, {\bf
321 or}, {\bf not}. Parentheses can be used to alter the precedence of
322 the operators.
323
324 \begin{center}
325 \begin{tabular}{|ll|}
326 \hline
327 {\bf logical operator} & {\bf equivalent operator} \\
328 \hline
329 and & ``\&'', ``\&\&'' \\
330 or & ``$|$'', ``$||$'', ``,'' \\
331 not & ``!'' \\
332 \hline
333 \end{tabular}
334 \end{center}
335
336 \subsection{\label{appendixSection:name}Name expressions}
337
338 \begin{center}
339 \begin{tabular}{|llp{2in}|}
340 \hline {\bf type of expression} & {\bf examples} & {\bf translation
341 of
342 examples} \\
343 \hline expression without ``.'' & select DMPC & select all
344 StuntDoubles
345 belonging to all DMPC molecules \\
346 & select C* & select all atoms which have atom types beginning with C
347 \\
348 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
349 only select the rigid bodies, and not the atoms belonging to them). \\
350 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
351 O\_TIP3P
352 atoms belonging to TIP3P molecules \\
353 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
354 the first
355 RigidBody in each DMPC molecule \\
356 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
357 molecule \\
358 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
359 select all atoms
360 belonging to all rigid bodies within all DMPC molecules \\
361 \hline
362 \end{tabular}
363 \end{center}
364
365 \subsection{\label{appendixSection:index}Index expressions}
366
367 \begin{center}
368 \begin{tabular}{|lp{4in}|}
369 \hline
370 {\bf examples} & {\bf translation of examples} \\
371 \hline
372 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
373 select 20 to 30 & select all of the StuntDoubles belonging to
374 molecules which have global indices between 20 (inclusive) and 30
375 (exclusive) \\
376 \hline
377 \end{tabular}
378 \end{center}
379
380 \subsection{\label{appendixSection:predefined}Predefined sets}
381
382 \begin{center}
383 \begin{tabular}{|ll|}
384 \hline
385 {\bf keyword} & {\bf description} \\
386 \hline
387 all & select all StuntDoubles \\
388 none & select none of the StuntDoubles \\
389 \hline
390 \end{tabular}
391 \end{center}
392
393 \subsection{\label{appendixSection:userdefined}User-defined expressions}
394
395 Users can define arbitrary terms to represent groups of
396 StuntDoubles, and then use the define terms in select commands. The
397 general form for the define command is: {\bf define {\it term
398 expression}}. Once defined, the user can specify such terms in
399 boolean expressions
400
401 {\tt define SSDWATER SSD or SSD1 or SSDRF}
402
403 {\tt select SSDWATER}
404
405 \subsection{\label{appendixSection:comparison}Comparison expressions}
406
407 StuntDoubles can be selected by using comparision operators on their
408 properties. The general form for the comparison command is: a
409 property name, followed by a comparision operator and then a number.
410
411 \begin{center}
412 \begin{tabular}{|l|l|}
413 \hline
414 {\bf property} & mass, charge \\
415 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
416 ``$<=$'', ``$!=$'' \\
417 \hline
418 \end{tabular}
419 \end{center}
420
421 For example, the phrase {\tt select mass > 16.0 and charge < -2}
422 would select StuntDoubles which have mass greater than 16.0 and
423 charges less than -2.
424
425 \subsection{\label{appendixSection:within}Within expressions}
426
427 The ``within'' keyword allows the user to select all StuntDoubles
428 within the specified distance (in Angstroms) from a selection,
429 including the selected atom itself. The general form for within
430 selection is: {\tt select within(distance, expression)}
431
432 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
433 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
434 atoms.
435
436
437 \section{\label{appendixSection:analysisFramework}Analysis Framework}
438
439 \subsection{\label{appendixSection:StaticProps}StaticProps}
440
441 {\tt StaticProps} can compute properties which are averaged over
442 some or all of the configurations that are contained within a dump
443 file. The most common example of a static property that can be
444 computed is the pair distribution function between atoms of type $A$
445 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
446 also be used to compute the density distributions of other molecules
447 in a reference frame {\it fixed to the body-fixed reference frame}
448 of a selected atom or rigid body.
449
450 There are five seperate radial distribution functions availiable in
451 OOPSE. Since every radial distrbution function invlove the
452 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
453 -{}-sele2} must be specified to tell StaticProps which bodies to
454 include in the calculation.
455
456 \begin{description}
457 \item[{\tt -{}-gofr}] Computes the pair distribution function,
458 \begin{equation*}
459 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
460 \sum_{j \in B} \delta(r - r_{ij}) \rangle
461 \end{equation*}
462 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
463 function. The angle is defined by the intermolecular vector
464 $\vec{r}$ and $z$-axis of DirectionalAtom A,
465 \begin{equation*}
466 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
467 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
468 \theta_{ij} - \cos \theta)\rangle
469 \end{equation*}
470 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
471 function. The angle is defined by the $z$-axes of the two
472 DirectionalAtoms A and B.
473 \begin{equation*}
474 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
475 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
476 \omega_{ij} - \cos \omega)\rangle
477 \end{equation*}
478 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
479 space $\theta, \omega$ defined by the two angles mentioned above.
480 \begin{equation*}
481 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
482 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
483 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
484 \omega)\rangle
485 \end{equation*}
486 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
487 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
488 and {\tt -{}-refsele} must be given to define A's internal
489 coordinate set as the reference frame for the calculation.
490 \end{description}
491
492 The vectors (and angles) associated with these angular pair
493 distribution functions are most easily seen in the figure below:
494
495 \begin{figure}
496 \centering
497 \includegraphics[width=3in]{definition.eps}
498 \caption[Definitions of the angles between directional objects]{ \\
499 Any two directional objects (DirectionalAtoms and RigidBodies) have
500 a set of two angles ($\theta$, and $\omega$) between the z-axes of
501 their body-fixed frames.} \label{oopseFig:gofr}
502 \end{figure}
503
504 Due to the fact that the selected StuntDoubles from two selections
505 may be overlapped, {\tt StaticProps} performs the calculation in
506 three stages which are illustrated in
507 Fig.~\ref{oopseFig:staticPropsProcess}.
508
509 \begin{figure}
510 \centering
511 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
512 \caption[A representation of the three-stage correlations in
513 \texttt{StaticProps}]{This diagram illustrates three-stage
514 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
515 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
516 -{}-sele2} respectively, while $C$ is the number of stuntdobules
517 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
518 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
519 the contrary, the third stage($C$ and $C$) are completely
520 overlapping} \label{oopseFig:staticPropsProcess}
521 \end{figure}
522
523 The options available for {\tt StaticProps} are as follows:
524 \begin{longtable}[c]{|EFG|}
525 \caption{StaticProps Command-line Options}
526 \\ \hline
527 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
528 \endhead
529 \hline
530 \endfoot
531 -h& {\tt -{}-help} & Print help and exit \\
532 -V& {\tt -{}-version} & Print version and exit \\
533 -i& {\tt -{}-input} & input dump file \\
534 -o& {\tt -{}-output} & output file name \\
535 -n& {\tt -{}-step} & process every n frame (default=`1') \\
536 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
537 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
538 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
539 & {\tt -{}-sele1} & select the first StuntDouble set \\
540 & {\tt -{}-sele2} & select the second StuntDouble set \\
541 & {\tt -{}-sele3} & select the third StuntDouble set \\
542 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
543 & {\tt -{}-molname} & molecule name \\
544 & {\tt -{}-begin} & begin internal index \\
545 & {\tt -{}-end} & end internal index \\
546 \hline
547 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
548 \hline
549 & {\tt -{}-gofr} & $g(r)$ \\
550 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
551 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
552 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
553 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
554 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
555 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
556 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
557 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
558 \end{longtable}
559
560 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
561
562 {\tt DynamicProps} computes time correlation functions from the
563 configurations stored in a dump file. Typical examples of time
564 correlation functions are the mean square displacement and the
565 velocity autocorrelation functions. Once again, the selection
566 syntax can be used to specify the StuntDoubles that will be used for
567 the calculation. A general time correlation function can be thought
568 of as:
569 \begin{equation}
570 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
571 \end{equation}
572 where $\vec{u}_A(t)$ is a vector property associated with an atom of
573 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
574 vector property associated with an atom of type $B$ at a different
575 time $t^{\prime}$. In most autocorrelation functions, the vector
576 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
577 $B$) are identical, and the three calculations built in to {\tt
578 DynamicProps} make these assumptions. It is possible, however, to
579 make simple modifications to the {\tt DynamicProps} code to allow
580 the use of {\it cross} time correlation functions (i.e. with
581 different vectors). The ability to use two selection scripts to
582 select different types of atoms is already present in the code.
583
584 For large simulations, the trajectory files can sometimes reach
585 sizes in excess of several gigabytes. In order to effectively
586 analyze that amount of data. In order to prevent a situation where
587 the program runs out of memory due to large trajectories,
588 \texttt{dynamicProps} will estimate the size of free memory at
589 first, and determine the number of frames in each block, which
590 allows the operating system to load two blocks of data
591 simultaneously without swapping. Upon reading two blocks of the
592 trajectory, \texttt{dynamicProps} will calculate the time
593 correlation within the first block and the cross correlations
594 between the two blocks. This second block is then freed and then
595 incremented and the process repeated until the end of the
596 trajectory. Once the end is reached, the first block is freed then
597 incremented, until all frame pairs have been correlated in time.
598 This process is illustrated in
599 Fig.~\ref{oopseFig:dynamicPropsProcess}.
600
601 \begin{figure}
602 \centering
603 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
604 \caption[A representation of the block correlations in
605 \texttt{dynamicProps}]{This diagram illustrates block correlations
606 processing in \texttt{dynamicProps}. The shaded region represents
607 the self correlation of the block, and the open blocks are read one
608 at a time and the cross correlations between blocks are calculated.}
609 \label{oopseFig:dynamicPropsProcess}
610 \end{figure}
611
612 The options available for DynamicProps are as follows:
613 \begin{longtable}[c]{|EFG|}
614 \caption{DynamicProps Command-line Options}
615 \\ \hline
616 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
617 \endhead
618 \hline
619 \endfoot
620 -h& {\tt -{}-help} & Print help and exit \\
621 -V& {\tt -{}-version} & Print version and exit \\
622 -i& {\tt -{}-input} & input dump file \\
623 -o& {\tt -{}-output} & output file name \\
624 & {\tt -{}-sele1} & select first StuntDouble set \\
625 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
626 \hline
627 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
628 \hline
629 -r& {\tt -{}-rcorr} & compute mean square displacement \\
630 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
631 -d& {\tt -{}-dcorr} & compute dipole correlation function
632 \end{longtable}
633
634 \section{\label{appendixSection:tools}Other Useful Utilities}
635
636 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
637
638 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
639 which can be opened by other molecular dynamics viewers such as Jmol
640 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
641 as follows:
642
643
644 \begin{longtable}[c]{|EFG|}
645 \caption{Dump2XYZ Command-line Options}
646 \\ \hline
647 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
648 \endhead
649 \hline
650 \endfoot
651 -h & {\tt -{}-help} & Print help and exit \\
652 -V & {\tt -{}-version} & Print version and exit \\
653 -i & {\tt -{}-input} & input dump file \\
654 -o & {\tt -{}-output} & output file name \\
655 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
656 -w & {\tt -{}-water} & skip the the waters (default=off) \\
657 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
658 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
659 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
660 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
661 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
662 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
663 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
664 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
665 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
666 converted. \\
667 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
668 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
669 \end{longtable}
670
671 \subsection{\label{appendixSection:hydrodynamics}Hydro}
672
673 {\tt Hydro} can calculate resistance and diffusion tensors at the
674 center of resistance. Both tensors at the center of diffusion can
675 also be reported from the program, as well as the coordinates for
676 the beads which are used to approximate the arbitrary shapes. The
677 options available for Hydro are as follows:
678 \begin{longtable}[c]{|EFG|}
679 \caption{Hydrodynamics Command-line Options}
680 \\ \hline
681 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
682 \endhead
683 \hline
684 \endfoot
685 -h & {\tt -{}-help} & Print help and exit \\
686 -V & {\tt -{}-version} & Print version and exit \\
687 -i & {\tt -{}-input} & input dump file \\
688 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
689 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
690 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
691 \end{longtable}