ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2824
Committed: Thu Jun 8 15:44:14 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31571 byte(s)
Log Message:
adding visitor UML structure

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern not only provides a mechanism to restrict
122 instantiation of a class to one object, but also provides a global
123 point of access to the object. Currently implemented as a global
124 variable, the logging utility which reports error and warning
125 messages to the console in {\sc OOPSE} is a good candidate for
126 applying the Singleton pattern to avoid the global namespace
127 pollution.Although the singleton pattern can be implemented in
128 various ways to account for different aspects of the software
129 designs, such as lifespan control \textit{etc}, we only use the
130 static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 is declared as
132 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133
134 class IntegratorFactory {
135 public:
136 static IntegratorFactory* getInstance();
137 protected:
138 IntegratorFactory();
139 private:
140 static IntegratorFactory* instance_;
141 };
142 \end{lstlisting}
143 The corresponding implementation is
144 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145
146 IntegratorFactory::instance_ = NULL;
147
148 IntegratorFactory* getInstance() {
149 if (instance_ == NULL){
150 instance_ = new IntegratorFactory;
151 }
152 return instance_;
153 }
154 \end{lstlisting}
155 Since constructor is declared as {\tt protected}, a client can not
156 instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 member function {\tt getInstance} serves as the only entry of access
158 to {\tt IntegratorFactory}, this approach fulfills the basic
159 requirement, a single instance. Another consequence of this approach
160 is the automatic destruction since static data are destroyed upon
161 program termination.
162
163 \subsection{\label{appendixSection:factoryMethod}Factory Method}
164
165 Categoried as a creational pattern, the Factory Method pattern deals
166 with the problem of creating objects without specifying the exact
167 class of object that will be created. Factory Method is typically
168 implemented by delegating the creation operation to the subclasses.
169
170 Registers a creator with a type identifier. Looks up the type
171 identifier in the internal map. If it is found, it invokes the
172 corresponding creator for the type identifier and returns its
173 result.
174 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
175 class IntegratorCreator;
176 class IntegratorFactory {
177 public:
178 typedef std::map<string, IntegratorCreator*> CreatorMapType;
179
180 bool registerIntegrator(IntegratorCreator* creator);
181
182 Integrator* createIntegrator(const string& id, SimInfo* info);
183
184 private:
185 CreatorMapType creatorMap_;
186 };
187 \end{lstlisting}
188
189 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
190 bool IntegratorFactory::unregisterIntegrator(const string& id) {
191 return creatorMap_.erase(id) == 1;
192 }
193
194 Integrator*
195 IntegratorFactory::createIntegrator(const string& id, SimInfo* info) {
196 CreatorMapType::iterator i = creatorMap_.find(id);
197 if (i != creatorMap_.end()) {
198 //invoke functor to create object
199 return (i->second)->create(info);
200 } else {
201 return NULL;
202 }
203 }
204 \end{lstlisting}
205
206 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
207
208 class IntegratorCreator {
209 public:
210 IntegratorCreator(const string& ident) : ident_(ident) {}
211
212 const string& getIdent() const { return ident_; }
213
214 virtual Integrator* create(SimInfo* info) const = 0;
215
216 private:
217 string ident_;
218 };
219
220 template<class ConcreteIntegrator>
221 class IntegratorBuilder : public IntegratorCreator {
222 public:
223 IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
224 virtual Integrator* create(SimInfo* info) const {
225 return new ConcreteIntegrator(info);
226 }
227 };
228 \end{lstlisting}
229
230 \subsection{\label{appendixSection:visitorPattern}Visitor}
231
232 The purpose of the Visitor Pattern is to encapsulate an operation
233 that you want to perform on the elements. The operation being
234 performed on a structure can be switched without changing the
235 interfaces of the elements. In other words, one can add virtual
236 functions into a set of classes without modifying their interfaces.
237 The UML class diagram of Visitor patten is shown in
238 Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
239 Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
240 extensively.
241
242 \begin{figure}
243 \centering
244 \includegraphics[width=\linewidth]{architecture.eps}
245 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
246 of {\sc OOPSE}} \label{appendixFig:visitorUML}
247 \end{figure}
248
249 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
250 class BaseVisitor{
251 public:
252 virtual void visit(Atom* atom);
253 virtual void visit(DirectionalAtom* datom);
254 virtual void visit(RigidBody* rb);
255 };
256 \end{lstlisting}
257
258 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
259 class StuntDouble {
260 public:
261 virtual void accept(BaseVisitor* v) = 0;
262 };
263
264 class Atom: public StuntDouble {
265 public:
266 virtual void accept{BaseVisitor* v*} {v->visit(this);}
267 };
268
269 class DirectionalAtom: public Atom {
270 public:
271 virtual void accept{BaseVisitor* v*} {v->visit(this);}
272 };
273
274 class RigidBody: public StuntDouble {
275 public:
276 virtual void accept{BaseVisitor* v*} {v->visit(this);}
277 };
278
279 \end{lstlisting}
280 \section{\label{appendixSection:concepts}Concepts}
281
282 OOPSE manipulates both traditional atoms as well as some objects
283 that {\it behave like atoms}. These objects can be rigid
284 collections of atoms or atoms which have orientational degrees of
285 freedom. Here is a diagram of the class heirarchy:
286
287 %\begin{figure}
288 %\centering
289 %\includegraphics[width=3in]{heirarchy.eps}
290 %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
291 %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
292 %selection syntax allows the user to select any of the objects that
293 %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
294 %\end{figure}
295
296 \begin{itemize}
297 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
298 integrators and minimizers.
299 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
300 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
301 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
302 DirectionalAtom}s which behaves as a single unit.
303 \end{itemize}
304
305 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
306 own names which are specified in the {\tt .md} file. In contrast,
307 RigidBodies are denoted by their membership and index inside a
308 particular molecule: [MoleculeName]\_RB\_[index] (the contents
309 inside the brackets depend on the specifics of the simulation). The
310 names of rigid bodies are generated automatically. For example, the
311 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
312
313 \section{\label{appendixSection:syntax}Syntax of the Select Command}
314
315 The most general form of the select command is: {\tt select {\it
316 expression}}. This expression represents an arbitrary set of
317 StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
318 composed of either name expressions, index expressions, predefined
319 sets, user-defined expressions, comparison operators, within
320 expressions, or logical combinations of the above expression types.
321 Expressions can be combined using parentheses and the Boolean
322 operators.
323
324 \subsection{\label{appendixSection:logical}Logical expressions}
325
326 The logical operators allow complex queries to be constructed out of
327 simpler ones using the standard boolean connectives {\bf and}, {\bf
328 or}, {\bf not}. Parentheses can be used to alter the precedence of
329 the operators.
330
331 \begin{center}
332 \begin{tabular}{|ll|}
333 \hline
334 {\bf logical operator} & {\bf equivalent operator} \\
335 \hline
336 and & ``\&'', ``\&\&'' \\
337 or & ``$|$'', ``$||$'', ``,'' \\
338 not & ``!'' \\
339 \hline
340 \end{tabular}
341 \end{center}
342
343 \subsection{\label{appendixSection:name}Name expressions}
344
345 \begin{center}
346 \begin{tabular}{|llp{2in}|}
347 \hline {\bf type of expression} & {\bf examples} & {\bf translation
348 of
349 examples} \\
350 \hline expression without ``.'' & select DMPC & select all
351 StuntDoubles
352 belonging to all DMPC molecules \\
353 & select C* & select all atoms which have atom types beginning with C
354 \\
355 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
356 only select the rigid bodies, and not the atoms belonging to them). \\
357 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
358 O\_TIP3P
359 atoms belonging to TIP3P molecules \\
360 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
361 the first
362 RigidBody in each DMPC molecule \\
363 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
364 molecule \\
365 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
366 select all atoms
367 belonging to all rigid bodies within all DMPC molecules \\
368 \hline
369 \end{tabular}
370 \end{center}
371
372 \subsection{\label{appendixSection:index}Index expressions}
373
374 \begin{center}
375 \begin{tabular}{|lp{4in}|}
376 \hline
377 {\bf examples} & {\bf translation of examples} \\
378 \hline
379 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
380 select 20 to 30 & select all of the StuntDoubles belonging to
381 molecules which have global indices between 20 (inclusive) and 30
382 (exclusive) \\
383 \hline
384 \end{tabular}
385 \end{center}
386
387 \subsection{\label{appendixSection:predefined}Predefined sets}
388
389 \begin{center}
390 \begin{tabular}{|ll|}
391 \hline
392 {\bf keyword} & {\bf description} \\
393 \hline
394 all & select all StuntDoubles \\
395 none & select none of the StuntDoubles \\
396 \hline
397 \end{tabular}
398 \end{center}
399
400 \subsection{\label{appendixSection:userdefined}User-defined expressions}
401
402 Users can define arbitrary terms to represent groups of
403 StuntDoubles, and then use the define terms in select commands. The
404 general form for the define command is: {\bf define {\it term
405 expression}}. Once defined, the user can specify such terms in
406 boolean expressions
407
408 {\tt define SSDWATER SSD or SSD1 or SSDRF}
409
410 {\tt select SSDWATER}
411
412 \subsection{\label{appendixSection:comparison}Comparison expressions}
413
414 StuntDoubles can be selected by using comparision operators on their
415 properties. The general form for the comparison command is: a
416 property name, followed by a comparision operator and then a number.
417
418 \begin{center}
419 \begin{tabular}{|l|l|}
420 \hline
421 {\bf property} & mass, charge \\
422 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
423 ``$<=$'', ``$!=$'' \\
424 \hline
425 \end{tabular}
426 \end{center}
427
428 For example, the phrase {\tt select mass > 16.0 and charge < -2}
429 would select StuntDoubles which have mass greater than 16.0 and
430 charges less than -2.
431
432 \subsection{\label{appendixSection:within}Within expressions}
433
434 The ``within'' keyword allows the user to select all StuntDoubles
435 within the specified distance (in Angstroms) from a selection,
436 including the selected atom itself. The general form for within
437 selection is: {\tt select within(distance, expression)}
438
439 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
440 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
441 atoms.
442
443
444 \section{\label{appendixSection:analysisFramework}Analysis Framework}
445
446 \subsection{\label{appendixSection:StaticProps}StaticProps}
447
448 {\tt StaticProps} can compute properties which are averaged over
449 some or all of the configurations that are contained within a dump
450 file. The most common example of a static property that can be
451 computed is the pair distribution function between atoms of type $A$
452 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
453 also be used to compute the density distributions of other molecules
454 in a reference frame {\it fixed to the body-fixed reference frame}
455 of a selected atom or rigid body.
456
457 There are five seperate radial distribution functions availiable in
458 OOPSE. Since every radial distrbution function invlove the
459 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
460 -{}-sele2} must be specified to tell StaticProps which bodies to
461 include in the calculation.
462
463 \begin{description}
464 \item[{\tt -{}-gofr}] Computes the pair distribution function,
465 \begin{equation*}
466 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
467 \sum_{j \in B} \delta(r - r_{ij}) \rangle
468 \end{equation*}
469 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
470 function. The angle is defined by the intermolecular vector
471 $\vec{r}$ and $z$-axis of DirectionalAtom A,
472 \begin{equation*}
473 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
474 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
475 \theta_{ij} - \cos \theta)\rangle
476 \end{equation*}
477 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
478 function. The angle is defined by the $z$-axes of the two
479 DirectionalAtoms A and B.
480 \begin{equation*}
481 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
482 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
483 \omega_{ij} - \cos \omega)\rangle
484 \end{equation*}
485 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
486 space $\theta, \omega$ defined by the two angles mentioned above.
487 \begin{equation*}
488 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
489 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
490 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
491 \omega)\rangle
492 \end{equation*}
493 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
494 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
495 and {\tt -{}-refsele} must be given to define A's internal
496 coordinate set as the reference frame for the calculation.
497 \end{description}
498
499 The vectors (and angles) associated with these angular pair
500 distribution functions are most easily seen in the figure below:
501
502 \begin{figure}
503 \centering
504 \includegraphics[width=3in]{definition.eps}
505 \caption[Definitions of the angles between directional objects]{ \\
506 Any two directional objects (DirectionalAtoms and RigidBodies) have
507 a set of two angles ($\theta$, and $\omega$) between the z-axes of
508 their body-fixed frames.} \label{oopseFig:gofr}
509 \end{figure}
510
511 Due to the fact that the selected StuntDoubles from two selections
512 may be overlapped, {\tt StaticProps} performs the calculation in
513 three stages which are illustrated in
514 Fig.~\ref{oopseFig:staticPropsProcess}.
515
516 \begin{figure}
517 \centering
518 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
519 \caption[A representation of the three-stage correlations in
520 \texttt{StaticProps}]{This diagram illustrates three-stage
521 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
522 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
523 -{}-sele2} respectively, while $C$ is the number of stuntdobules
524 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
525 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
526 the contrary, the third stage($C$ and $C$) are completely
527 overlapping} \label{oopseFig:staticPropsProcess}
528 \end{figure}
529
530 The options available for {\tt StaticProps} are as follows:
531 \begin{longtable}[c]{|EFG|}
532 \caption{StaticProps Command-line Options}
533 \\ \hline
534 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
535 \endhead
536 \hline
537 \endfoot
538 -h& {\tt -{}-help} & Print help and exit \\
539 -V& {\tt -{}-version} & Print version and exit \\
540 -i& {\tt -{}-input} & input dump file \\
541 -o& {\tt -{}-output} & output file name \\
542 -n& {\tt -{}-step} & process every n frame (default=`1') \\
543 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
544 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
545 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
546 & {\tt -{}-sele1} & select the first StuntDouble set \\
547 & {\tt -{}-sele2} & select the second StuntDouble set \\
548 & {\tt -{}-sele3} & select the third StuntDouble set \\
549 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
550 & {\tt -{}-molname} & molecule name \\
551 & {\tt -{}-begin} & begin internal index \\
552 & {\tt -{}-end} & end internal index \\
553 \hline
554 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
555 \hline
556 & {\tt -{}-gofr} & $g(r)$ \\
557 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
558 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
559 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
560 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
561 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
562 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
563 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
564 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
565 \end{longtable}
566
567 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
568
569 {\tt DynamicProps} computes time correlation functions from the
570 configurations stored in a dump file. Typical examples of time
571 correlation functions are the mean square displacement and the
572 velocity autocorrelation functions. Once again, the selection
573 syntax can be used to specify the StuntDoubles that will be used for
574 the calculation. A general time correlation function can be thought
575 of as:
576 \begin{equation}
577 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
578 \end{equation}
579 where $\vec{u}_A(t)$ is a vector property associated with an atom of
580 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
581 vector property associated with an atom of type $B$ at a different
582 time $t^{\prime}$. In most autocorrelation functions, the vector
583 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
584 $B$) are identical, and the three calculations built in to {\tt
585 DynamicProps} make these assumptions. It is possible, however, to
586 make simple modifications to the {\tt DynamicProps} code to allow
587 the use of {\it cross} time correlation functions (i.e. with
588 different vectors). The ability to use two selection scripts to
589 select different types of atoms is already present in the code.
590
591 For large simulations, the trajectory files can sometimes reach
592 sizes in excess of several gigabytes. In order to effectively
593 analyze that amount of data. In order to prevent a situation where
594 the program runs out of memory due to large trajectories,
595 \texttt{dynamicProps} will estimate the size of free memory at
596 first, and determine the number of frames in each block, which
597 allows the operating system to load two blocks of data
598 simultaneously without swapping. Upon reading two blocks of the
599 trajectory, \texttt{dynamicProps} will calculate the time
600 correlation within the first block and the cross correlations
601 between the two blocks. This second block is then freed and then
602 incremented and the process repeated until the end of the
603 trajectory. Once the end is reached, the first block is freed then
604 incremented, until all frame pairs have been correlated in time.
605 This process is illustrated in
606 Fig.~\ref{oopseFig:dynamicPropsProcess}.
607
608 \begin{figure}
609 \centering
610 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
611 \caption[A representation of the block correlations in
612 \texttt{dynamicProps}]{This diagram illustrates block correlations
613 processing in \texttt{dynamicProps}. The shaded region represents
614 the self correlation of the block, and the open blocks are read one
615 at a time and the cross correlations between blocks are calculated.}
616 \label{oopseFig:dynamicPropsProcess}
617 \end{figure}
618
619 The options available for DynamicProps are as follows:
620 \begin{longtable}[c]{|EFG|}
621 \caption{DynamicProps Command-line Options}
622 \\ \hline
623 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
624 \endhead
625 \hline
626 \endfoot
627 -h& {\tt -{}-help} & Print help and exit \\
628 -V& {\tt -{}-version} & Print version and exit \\
629 -i& {\tt -{}-input} & input dump file \\
630 -o& {\tt -{}-output} & output file name \\
631 & {\tt -{}-sele1} & select first StuntDouble set \\
632 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
633 \hline
634 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
635 \hline
636 -r& {\tt -{}-rcorr} & compute mean square displacement \\
637 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
638 -d& {\tt -{}-dcorr} & compute dipole correlation function
639 \end{longtable}
640
641 \section{\label{appendixSection:tools}Other Useful Utilities}
642
643 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
644
645 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
646 which can be opened by other molecular dynamics viewers such as Jmol
647 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
648 as follows:
649
650
651 \begin{longtable}[c]{|EFG|}
652 \caption{Dump2XYZ Command-line Options}
653 \\ \hline
654 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
655 \endhead
656 \hline
657 \endfoot
658 -h & {\tt -{}-help} & Print help and exit \\
659 -V & {\tt -{}-version} & Print version and exit \\
660 -i & {\tt -{}-input} & input dump file \\
661 -o & {\tt -{}-output} & output file name \\
662 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
663 -w & {\tt -{}-water} & skip the the waters (default=off) \\
664 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
665 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
666 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
667 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
668 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
669 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
670 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
671 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
672 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
673 converted. \\
674 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
675 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
676 \end{longtable}
677
678 \subsection{\label{appendixSection:hydrodynamics}Hydro}
679
680 {\tt Hydro} can calculate resistance and diffusion tensors at the
681 center of resistance. Both tensors at the center of diffusion can
682 also be reported from the program, as well as the coordinates for
683 the beads which are used to approximate the arbitrary shapes. The
684 options available for Hydro are as follows:
685 \begin{longtable}[c]{|EFG|}
686 \caption{Hydrodynamics Command-line Options}
687 \\ \hline
688 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
689 \endhead
690 \hline
691 \endfoot
692 -h & {\tt -{}-help} & Print help and exit \\
693 -V & {\tt -{}-version} & Print version and exit \\
694 -i & {\tt -{}-input} & input dump file \\
695 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
696 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
697 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
698 \end{longtable}