ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2827
Committed: Thu Jun 8 20:05:53 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31373 byte(s)
Log Message:
minor format change

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern not only provides a mechanism to restrict
122 instantiation of a class to one object, but also provides a global
123 point of access to the object. Currently implemented as a global
124 variable, the logging utility which reports error and warning
125 messages to the console in {\sc OOPSE} is a good candidate for
126 applying the Singleton pattern to avoid the global namespace
127 pollution.Although the singleton pattern can be implemented in
128 various ways to account for different aspects of the software
129 designs, such as lifespan control \textit{etc}, we only use the
130 static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 is declared as
132 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133
134 class IntegratorFactory {
135 public:
136 static IntegratorFactory* getInstance();
137 protected:
138 IntegratorFactory();
139 private:
140 static IntegratorFactory* instance_;
141 };
142
143 \end{lstlisting}
144 The corresponding implementation is
145 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
146
147 IntegratorFactory::instance_ = NULL;
148
149 IntegratorFactory* getInstance() {
150 if (instance_ == NULL){
151 instance_ = new IntegratorFactory;
152 }
153 return instance_;
154 }
155
156 \end{lstlisting}
157 Since constructor is declared as {\tt protected}, a client can not
158 instantiate {\tt IntegratorFactory} directly. Moreover, since the
159 member function {\tt getInstance} serves as the only entry of access
160 to {\tt IntegratorFactory}, this approach fulfills the basic
161 requirement, a single instance. Another consequence of this approach
162 is the automatic destruction since static data are destroyed upon
163 program termination.
164
165 \subsection{\label{appendixSection:factoryMethod}Factory Method}
166
167 Categoried as a creational pattern, the Factory Method pattern deals
168 with the problem of creating objects without specifying the exact
169 class of object that will be created. Factory Method is typically
170 implemented by delegating the creation operation to the subclasses.
171
172 Registers a creator with a type identifier. Looks up the type
173 identifier in the internal map. If it is found, it invokes the
174 corresponding creator for the type identifier and returns its
175 result.
176 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}]
177
178 class IntegratorFactory {
179 public:
180 typedef std::map<string, IntegratorCreator*> CreatorMapType;
181
182 bool registerIntegrator(IntegratorCreator* creator);
183
184 Integrator* createIntegrator(const string& id, SimInfo* info);
185
186 private:
187 CreatorMapType creatorMap_;
188 };
189
190 \end{lstlisting}
191
192 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (II)].},label={appendixScheme:factoryDeclarationImplementation}]
193
194 bool IntegratorFactory::unregisterIntegrator(const string& id) {
195 return creatorMap_.erase(id) == 1;
196 }
197
198 Integrator* IntegratorFactory::createIntegrator(const string& id,
199 SimInfo* info) {
200 CreatorMapType::iterator i = creatorMap_.find(id);
201 if (i != creatorMap_.end()) {
202 return (i->second)->create(info);
203 } else {
204 return NULL;
205 }
206 }
207
208 \end{lstlisting}
209
210 \begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)].},label={appendixScheme:integratorCreator}]
211
212 class IntegratorCreator {
213 public:
214 IntegratorCreator(const string& ident) : ident_(ident) {}
215
216 const string& getIdent() const { return ident_; }
217
218 virtual Integrator* create(SimInfo* info) const = 0;
219
220 private:
221 string ident_;
222 };
223
224 template<class ConcreteIntegrator>
225 class IntegratorBuilder : public IntegratorCreator {
226 public:
227 IntegratorBuilder(const string& ident) : IntegratorCreator(ident) {}
228 virtual Integrator* create(SimInfo* info) const {
229 return new ConcreteIntegrator(info);
230 }
231 };
232 \end{lstlisting}
233
234 \subsection{\label{appendixSection:visitorPattern}Visitor}
235
236 The purpose of the Visitor Pattern is to encapsulate an operation
237 that you want to perform on the elements. The operation being
238 performed on a structure can be switched without changing the
239 interfaces of the elements. In other words, one can add virtual
240 functions into a set of classes without modifying their interfaces.
241 The UML class diagram of Visitor patten is shown in
242 Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in
243 Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern
244 extensively.
245
246 \begin{figure}
247 \centering
248 \includegraphics[width=\linewidth]{visitor.eps}
249 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
250 of {\sc OOPSE}} \label{appendixFig:visitorUML}
251 \end{figure}
252
253 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
254
255 class BaseVisitor{
256 public:
257 virtual void visit(Atom* atom);
258 virtual void visit(DirectionalAtom* datom);
259 virtual void visit(RigidBody* rb);
260 };
261
262 \end{lstlisting}
263
264 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
265
266 class StuntDouble {
267 public:
268 virtual void accept(BaseVisitor* v) = 0;
269 };
270
271 class Atom: public StuntDouble {
272 public:
273 virtual void accept{BaseVisitor* v*} {
274 v->visit(this);
275 }
276 };
277
278 class DirectionalAtom: public Atom {
279 public:
280 virtual void accept{BaseVisitor* v*} {
281 v->visit(this);
282 }
283 };
284
285 class RigidBody: public StuntDouble {
286 public:
287 virtual void accept{BaseVisitor* v*} {
288 v->visit(this);
289 }
290 };
291
292 \end{lstlisting}
293 \section{\label{appendixSection:concepts}Concepts}
294
295 OOPSE manipulates both traditional atoms as well as some objects
296 that {\it behave like atoms}. These objects can be rigid
297 collections of atoms or atoms which have orientational degrees of
298 freedom. Here is a diagram of the class heirarchy:
299
300 \begin{figure}
301 \centering
302 \includegraphics[width=3in]{heirarchy.eps}
303 \caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ The
304 class heirarchy of StuntDoubles in {\sc oopse}-3.0.
305 \begin{itemize}
306 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
307 integrators and minimizers.
308 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
309 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
310 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
311 DirectionalAtom}s which behaves as a single unit.
312 \end{itemize}} \label{oopseFig:heirarchy}
313 \end{figure}
314
315 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
316 own names which are specified in the {\tt .md} file. In contrast,
317 RigidBodies are denoted by their membership and index inside a
318 particular molecule: [MoleculeName]\_RB\_[index] (the contents
319 inside the brackets depend on the specifics of the simulation). The
320 names of rigid bodies are generated automatically. For example, the
321 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
322
323 \section{\label{appendixSection:syntax}Syntax of the Select Command}
324
325 The most general form of the select command is: {\tt select {\it
326 expression}}. This expression represents an arbitrary set of
327 StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
328 composed of either name expressions, index expressions, predefined
329 sets, user-defined expressions, comparison operators, within
330 expressions, or logical combinations of the above expression types.
331 Expressions can be combined using parentheses and the Boolean
332 operators.
333
334 \subsection{\label{appendixSection:logical}Logical expressions}
335
336 The logical operators allow complex queries to be constructed out of
337 simpler ones using the standard boolean connectives {\bf and}, {\bf
338 or}, {\bf not}. Parentheses can be used to alter the precedence of
339 the operators.
340
341 \begin{center}
342 \begin{tabular}{|ll|}
343 \hline
344 {\bf logical operator} & {\bf equivalent operator} \\
345 \hline
346 and & ``\&'', ``\&\&'' \\
347 or & ``$|$'', ``$||$'', ``,'' \\
348 not & ``!'' \\
349 \hline
350 \end{tabular}
351 \end{center}
352
353 \subsection{\label{appendixSection:name}Name expressions}
354
355 \begin{center}
356 \begin{tabular}{|llp{2in}|}
357 \hline {\bf type of expression} & {\bf examples} & {\bf translation
358 of
359 examples} \\
360 \hline expression without ``.'' & select DMPC & select all
361 StuntDoubles
362 belonging to all DMPC molecules \\
363 & select C* & select all atoms which have atom types beginning with C
364 \\
365 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
366 only select the rigid bodies, and not the atoms belonging to them). \\
367 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
368 O\_TIP3P
369 atoms belonging to TIP3P molecules \\
370 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
371 the first
372 RigidBody in each DMPC molecule \\
373 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
374 molecule \\
375 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
376 select all atoms
377 belonging to all rigid bodies within all DMPC molecules \\
378 \hline
379 \end{tabular}
380 \end{center}
381
382 \subsection{\label{appendixSection:index}Index expressions}
383
384 \begin{center}
385 \begin{tabular}{|lp{4in}|}
386 \hline
387 {\bf examples} & {\bf translation of examples} \\
388 \hline
389 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
390 select 20 to 30 & select all of the StuntDoubles belonging to
391 molecules which have global indices between 20 (inclusive) and 30
392 (exclusive) \\
393 \hline
394 \end{tabular}
395 \end{center}
396
397 \subsection{\label{appendixSection:predefined}Predefined sets}
398
399 \begin{center}
400 \begin{tabular}{|ll|}
401 \hline
402 {\bf keyword} & {\bf description} \\
403 \hline
404 all & select all StuntDoubles \\
405 none & select none of the StuntDoubles \\
406 \hline
407 \end{tabular}
408 \end{center}
409
410 \subsection{\label{appendixSection:userdefined}User-defined expressions}
411
412 Users can define arbitrary terms to represent groups of
413 StuntDoubles, and then use the define terms in select commands. The
414 general form for the define command is: {\bf define {\it term
415 expression}}. Once defined, the user can specify such terms in
416 boolean expressions
417
418 {\tt define SSDWATER SSD or SSD1 or SSDRF}
419
420 {\tt select SSDWATER}
421
422 \subsection{\label{appendixSection:comparison}Comparison expressions}
423
424 StuntDoubles can be selected by using comparision operators on their
425 properties. The general form for the comparison command is: a
426 property name, followed by a comparision operator and then a number.
427
428 \begin{center}
429 \begin{tabular}{|l|l|}
430 \hline
431 {\bf property} & mass, charge \\
432 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
433 ``$<=$'', ``$!=$'' \\
434 \hline
435 \end{tabular}
436 \end{center}
437
438 For example, the phrase {\tt select mass > 16.0 and charge < -2}
439 would select StuntDoubles which have mass greater than 16.0 and
440 charges less than -2.
441
442 \subsection{\label{appendixSection:within}Within expressions}
443
444 The ``within'' keyword allows the user to select all StuntDoubles
445 within the specified distance (in Angstroms) from a selection,
446 including the selected atom itself. The general form for within
447 selection is: {\tt select within(distance, expression)}
448
449 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
450 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
451 atoms.
452
453
454 \section{\label{appendixSection:analysisFramework}Analysis Framework}
455
456 \subsection{\label{appendixSection:StaticProps}StaticProps}
457
458 {\tt StaticProps} can compute properties which are averaged over
459 some or all of the configurations that are contained within a dump
460 file. The most common example of a static property that can be
461 computed is the pair distribution function between atoms of type $A$
462 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
463 also be used to compute the density distributions of other molecules
464 in a reference frame {\it fixed to the body-fixed reference frame}
465 of a selected atom or rigid body.
466
467 There are five seperate radial distribution functions availiable in
468 OOPSE. Since every radial distrbution function invlove the
469 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
470 -{}-sele2} must be specified to tell StaticProps which bodies to
471 include in the calculation.
472
473 \begin{description}
474 \item[{\tt -{}-gofr}] Computes the pair distribution function,
475 \begin{equation*}
476 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
477 \sum_{j \in B} \delta(r - r_{ij}) \rangle
478 \end{equation*}
479 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
480 function. The angle is defined by the intermolecular vector
481 $\vec{r}$ and $z$-axis of DirectionalAtom A,
482 \begin{equation*}
483 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
484 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
485 \theta_{ij} - \cos \theta)\rangle
486 \end{equation*}
487 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
488 function. The angle is defined by the $z$-axes of the two
489 DirectionalAtoms A and B.
490 \begin{equation*}
491 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
492 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
493 \omega_{ij} - \cos \omega)\rangle
494 \end{equation*}
495 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
496 space $\theta, \omega$ defined by the two angles mentioned above.
497 \begin{equation*}
498 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
499 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
500 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
501 \omega)\rangle
502 \end{equation*}
503 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
504 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
505 and {\tt -{}-refsele} must be given to define A's internal
506 coordinate set as the reference frame for the calculation.
507 \end{description}
508
509 The vectors (and angles) associated with these angular pair
510 distribution functions are most easily seen in the figure below:
511
512 \begin{figure}
513 \centering
514 \includegraphics[width=3in]{definition.eps}
515 \caption[Definitions of the angles between directional objects]{ \\
516 Any two directional objects (DirectionalAtoms and RigidBodies) have
517 a set of two angles ($\theta$, and $\omega$) between the z-axes of
518 their body-fixed frames.} \label{oopseFig:gofr}
519 \end{figure}
520
521 Due to the fact that the selected StuntDoubles from two selections
522 may be overlapped, {\tt StaticProps} performs the calculation in
523 three stages which are illustrated in
524 Fig.~\ref{oopseFig:staticPropsProcess}.
525
526 \begin{figure}
527 \centering
528 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
529 \caption[A representation of the three-stage correlations in
530 \texttt{StaticProps}]{This diagram illustrates three-stage
531 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
532 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
533 -{}-sele2} respectively, while $C$ is the number of stuntdobules
534 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
535 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
536 the contrary, the third stage($C$ and $C$) are completely
537 overlapping} \label{oopseFig:staticPropsProcess}
538 \end{figure}
539
540 The options available for {\tt StaticProps} are as follows:
541 \begin{longtable}[c]{|EFG|}
542 \caption{StaticProps Command-line Options}
543 \\ \hline
544 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
545 \endhead
546 \hline
547 \endfoot
548 -h& {\tt -{}-help} & Print help and exit \\
549 -V& {\tt -{}-version} & Print version and exit \\
550 -i& {\tt -{}-input} & input dump file \\
551 -o& {\tt -{}-output} & output file name \\
552 -n& {\tt -{}-step} & process every n frame (default=`1') \\
553 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
554 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
555 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
556 & {\tt -{}-sele1} & select the first StuntDouble set \\
557 & {\tt -{}-sele2} & select the second StuntDouble set \\
558 & {\tt -{}-sele3} & select the third StuntDouble set \\
559 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
560 & {\tt -{}-molname} & molecule name \\
561 & {\tt -{}-begin} & begin internal index \\
562 & {\tt -{}-end} & end internal index \\
563 \hline
564 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
565 \hline
566 & {\tt -{}-gofr} & $g(r)$ \\
567 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
568 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
569 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
570 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
571 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
572 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
573 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
574 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
575 \end{longtable}
576
577 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
578
579 {\tt DynamicProps} computes time correlation functions from the
580 configurations stored in a dump file. Typical examples of time
581 correlation functions are the mean square displacement and the
582 velocity autocorrelation functions. Once again, the selection
583 syntax can be used to specify the StuntDoubles that will be used for
584 the calculation. A general time correlation function can be thought
585 of as:
586 \begin{equation}
587 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
588 \end{equation}
589 where $\vec{u}_A(t)$ is a vector property associated with an atom of
590 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
591 vector property associated with an atom of type $B$ at a different
592 time $t^{\prime}$. In most autocorrelation functions, the vector
593 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
594 $B$) are identical, and the three calculations built in to {\tt
595 DynamicProps} make these assumptions. It is possible, however, to
596 make simple modifications to the {\tt DynamicProps} code to allow
597 the use of {\it cross} time correlation functions (i.e. with
598 different vectors). The ability to use two selection scripts to
599 select different types of atoms is already present in the code.
600
601 For large simulations, the trajectory files can sometimes reach
602 sizes in excess of several gigabytes. In order to effectively
603 analyze that amount of data. In order to prevent a situation where
604 the program runs out of memory due to large trajectories,
605 \texttt{dynamicProps} will estimate the size of free memory at
606 first, and determine the number of frames in each block, which
607 allows the operating system to load two blocks of data
608 simultaneously without swapping. Upon reading two blocks of the
609 trajectory, \texttt{dynamicProps} will calculate the time
610 correlation within the first block and the cross correlations
611 between the two blocks. This second block is then freed and then
612 incremented and the process repeated until the end of the
613 trajectory. Once the end is reached, the first block is freed then
614 incremented, until all frame pairs have been correlated in time.
615 This process is illustrated in
616 Fig.~\ref{oopseFig:dynamicPropsProcess}.
617
618 \begin{figure}
619 \centering
620 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
621 \caption[A representation of the block correlations in
622 \texttt{dynamicProps}]{This diagram illustrates block correlations
623 processing in \texttt{dynamicProps}. The shaded region represents
624 the self correlation of the block, and the open blocks are read one
625 at a time and the cross correlations between blocks are calculated.}
626 \label{oopseFig:dynamicPropsProcess}
627 \end{figure}
628
629 The options available for DynamicProps are as follows:
630 \begin{longtable}[c]{|EFG|}
631 \caption{DynamicProps Command-line Options}
632 \\ \hline
633 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
634 \endhead
635 \hline
636 \endfoot
637 -h& {\tt -{}-help} & Print help and exit \\
638 -V& {\tt -{}-version} & Print version and exit \\
639 -i& {\tt -{}-input} & input dump file \\
640 -o& {\tt -{}-output} & output file name \\
641 & {\tt -{}-sele1} & select first StuntDouble set \\
642 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
643 \hline
644 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
645 \hline
646 -r& {\tt -{}-rcorr} & compute mean square displacement \\
647 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
648 -d& {\tt -{}-dcorr} & compute dipole correlation function
649 \end{longtable}
650
651 \section{\label{appendixSection:tools}Other Useful Utilities}
652
653 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
654
655 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
656 which can be opened by other molecular dynamics viewers such as Jmol
657 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
658 as follows:
659
660
661 \begin{longtable}[c]{|EFG|}
662 \caption{Dump2XYZ Command-line Options}
663 \\ \hline
664 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
665 \endhead
666 \hline
667 \endfoot
668 -h & {\tt -{}-help} & Print help and exit \\
669 -V & {\tt -{}-version} & Print version and exit \\
670 -i & {\tt -{}-input} & input dump file \\
671 -o & {\tt -{}-output} & output file name \\
672 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
673 -w & {\tt -{}-water} & skip the the waters (default=off) \\
674 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
675 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
676 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
677 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
678 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
679 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
680 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
681 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
682 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
683 converted. \\
684 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
685 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
686 \end{longtable}
687
688 \subsection{\label{appendixSection:hydrodynamics}Hydro}
689
690 {\tt Hydro} can calculate resistance and diffusion tensors at the
691 center of resistance. Both tensors at the center of diffusion can
692 also be reported from the program, as well as the coordinates for
693 the beads which are used to approximate the arbitrary shapes. The
694 options available for Hydro are as follows:
695 \begin{longtable}[c]{|EFG|}
696 \caption{Hydrodynamics Command-line Options}
697 \\ \hline
698 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
699 \endhead
700 \hline
701 \endfoot
702 -h & {\tt -{}-help} & Print help and exit \\
703 -V & {\tt -{}-version} & Print version and exit \\
704 -i & {\tt -{}-input} & input dump file \\
705 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
706 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
707 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
708 \end{longtable}