ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2835
Committed: Thu Jun 8 22:39:54 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 31997 byte(s)
Log Message:
minor format change

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern not only provides a mechanism to restrict
122 instantiation of a class to one object, but also provides a global
123 point of access to the object. Currently implemented as a global
124 variable, the logging utility which reports error and warning
125 messages to the console in {\sc OOPSE} is a good candidate for
126 applying the Singleton pattern to avoid the global namespace
127 pollution.Although the singleton pattern can be implemented in
128 various ways to account for different aspects of the software
129 designs, such as lifespan control \textit{etc}, we only use the
130 static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 is declared as
132 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
133
134 class IntegratorFactory {
135 public:
136 static IntegratorFactory*
137 getInstance();
138 protected:
139 IntegratorFactory();
140 private:
141 static IntegratorFactory* instance_;
142 };
143
144 \end{lstlisting}
145 The corresponding implementation is
146 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
147
148 IntegratorFactory::instance_ = NULL;
149
150 IntegratorFactory* getInstance() {
151 if (instance_ == NULL){
152 instance_ = new IntegratorFactory;
153 }
154 return instance_;
155 }
156
157 \end{lstlisting}
158 Since constructor is declared as {\tt protected}, a client can not
159 instantiate {\tt IntegratorFactory} directly. Moreover, since the
160 member function {\tt getInstance} serves as the only entry of access
161 to {\tt IntegratorFactory}, this approach fulfills the basic
162 requirement, a single instance. Another consequence of this approach
163 is the automatic destruction since static data are destroyed upon
164 program termination.
165
166 \subsection{\label{appendixSection:factoryMethod}Factory Method}
167
168 Categoried as a creational pattern, the Factory Method pattern deals
169 with the problem of creating objects without specifying the exact
170 class of object that will be created. Factory Method is typically
171 implemented by delegating the creation operation to the subclasses.
172 {\tt Integrator} class Parameterized Factory pattern where factory
173 method ({\tt createIntegrator} member function) creates products
174 based on the identifier (see
175 List.~\ref{appendixScheme:factoryDeclaration}). If the identifier
176 has been already registered, the factory method will invoke the
177 corresponding creator (see List.~\ref{integratorCreator}) which
178 utilizes the modern C++ template technique to avoid subclassing.
179 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of {\tt IntegratorFactory} class.},label={appendixScheme:factoryDeclaration}]
180
181 class IntegratorFactory {
182 public:
183 typedef std::map<string, IntegratorCreator*> CreatorMapType;
184
185 bool registerIntegrator(IntegratorCreator* creator) {
186 return creatorMap_.insert(creator->getIdent(), creator).second;
187 }
188
189 Integrator* createIntegrator(const string& id, SimInfo* info) {
190 Integrator* result = NULL;
191 CreatorMapType::iterator i = creatorMap_.find(id);
192 if (i != creatorMap_.end()) {
193 result = (i->second)->create(info);
194 }
195 return result;
196 }
197
198 private:
199 CreatorMapType creatorMap_;
200 };
201 \end{lstlisting}
202 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
203
204 class IntegratorCreator {
205 public:
206 IntegratorCreator(const string& ident) : ident_(ident) {}
207
208 const string& getIdent() const { return ident_; }
209
210 virtual Integrator* create(SimInfo* info) const = 0;
211
212 private:
213 string ident_;
214 };
215
216 template<class ConcreteIntegrator>
217 class IntegratorBuilder : public IntegratorCreator {
218 public:
219 IntegratorBuilder(const string& ident)
220 : IntegratorCreator(ident) {}
221 virtual Integrator* create(SimInfo* info) const {
222 return new ConcreteIntegrator(info);
223 }
224 };
225 \end{lstlisting}
226
227 \subsection{\label{appendixSection:visitorPattern}Visitor}
228
229 The purpose of the Visitor Pattern is to encapsulate an operation
230 that you want to perform on the elements. The operation being
231 performed on a structure can be switched without changing the
232 interfaces of the elements. In other words, one can add virtual
233 functions into a set of classes without modifying their interfaces.
234 Fig.~\ref{appendixFig:visitorUML} demonstrates the structure of
235 Visitor pattern which is used extensively in {\tt Dump2XYZ}. In
236 order to convert an OOPSE dump file, a series of distinct and
237 unrelated operations are performed on different StuntDoubles.
238 Visitor allows one to keep related operations together by packing
239 them into one class. {\tt BaseAtomVisitor} is a typical example of
240 visitor in {\tt Dump2XYZ} program{see
241 List.~\ref{appendixScheme:visitor}}. In contrast to the operations,
242 the object structure or element classes rarely change(See
243 Fig.~\ref{oopseFig:heirarchy} and
244 List.~\ref{appendixScheme:element}).
245
246
247 \begin{figure}
248 \centering
249 \includegraphics[width=\linewidth]{visitor.eps}
250 \caption[The UML class diagram of Visitor patten] {The UML class
251 diagram of Visitor patten.} \label{appendixFig:visitorUML}
252 \end{figure}
253
254 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
255
256 class BaseVisitor{
257 public:
258 virtual void visit(Atom* atom);
259 virtual void visit(DirectionalAtom* datom);
260 virtual void visit(RigidBody* rb);
261 };
262
263 class BaseAtomVisitor:public BaseVisitor{ public:
264 virtual void visit(Atom* atom);
265 virtual void visit(DirectionalAtom* datom);
266 virtual void visit(RigidBody* rb);
267 };
268
269 \end{lstlisting}
270
271 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
272
273 class StuntDouble {
274 public:
275 virtual void accept(BaseVisitor* v) = 0;
276 };
277
278 class Atom: public StuntDouble {
279 public:
280 virtual void accept{BaseVisitor* v*} {
281 v->visit(this);
282 }
283 };
284
285 class DirectionalAtom: public Atom {
286 public:
287 virtual void accept{BaseVisitor* v*} {
288 v->visit(this);
289 }
290 };
291
292 class RigidBody: public StuntDouble {
293 public:
294 virtual void accept{BaseVisitor* v*} {
295 v->visit(this);
296 }
297 };
298
299 \end{lstlisting}
300
301 \section{\label{appendixSection:concepts}Concepts}
302
303 OOPSE manipulates both traditional atoms as well as some objects
304 that {\it behave like atoms}. These objects can be rigid
305 collections of atoms or atoms which have orientational degrees of
306 freedom. A diagram of the class heirarchy is illustrated in
307 Fig.~\ref{oopseFig:heirarchy}. Every Molecule, Atom and
308 DirectionalAtom in {\sc OOPSE} have their own names which are
309 specified in the {\tt .md} file. In contrast, RigidBodies are
310 denoted by their membership and index inside a particular molecule:
311 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
312 on the specifics of the simulation). The names of rigid bodies are
313 generated automatically. For example, the name of the first rigid
314 body in a DMPC molecule is DMPC\_RB\_0.
315 %\begin{figure}
316 %\centering
317 %\includegraphics[width=\linewidth]{heirarchy.eps}
318 %\caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of
319 %the class heirarchy.
320 %\begin{itemize}
321 %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
322 %integrators and minimizers.
323 %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
324 %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
325 %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
326 %DirectionalAtom}s which behaves as a single unit.
327 %\end{itemize}
328 %} \label{oopseFig:heirarchy}
329 %\end{figure}
330
331 \section{\label{appendixSection:syntax}Syntax of the Select Command}
332
333 The most general form of the select command is: {\tt select {\it
334 expression}}. This expression represents an arbitrary set of
335 StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
336 composed of either name expressions, index expressions, predefined
337 sets, user-defined expressions, comparison operators, within
338 expressions, or logical combinations of the above expression types.
339 Expressions can be combined using parentheses and the Boolean
340 operators.
341
342 \subsection{\label{appendixSection:logical}Logical expressions}
343
344 The logical operators allow complex queries to be constructed out of
345 simpler ones using the standard boolean connectives {\bf and}, {\bf
346 or}, {\bf not}. Parentheses can be used to alter the precedence of
347 the operators.
348
349 \begin{center}
350 \begin{tabular}{|ll|}
351 \hline
352 {\bf logical operator} & {\bf equivalent operator} \\
353 \hline
354 and & ``\&'', ``\&\&'' \\
355 or & ``$|$'', ``$||$'', ``,'' \\
356 not & ``!'' \\
357 \hline
358 \end{tabular}
359 \end{center}
360
361 \subsection{\label{appendixSection:name}Name expressions}
362
363 \begin{center}
364 \begin{tabular}{|llp{2in}|}
365 \hline {\bf type of expression} & {\bf examples} & {\bf translation
366 of
367 examples} \\
368 \hline expression without ``.'' & select DMPC & select all
369 StuntDoubles
370 belonging to all DMPC molecules \\
371 & select C* & select all atoms which have atom types beginning with C
372 \\
373 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
374 only select the rigid bodies, and not the atoms belonging to them). \\
375 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
376 O\_TIP3P
377 atoms belonging to TIP3P molecules \\
378 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
379 the first
380 RigidBody in each DMPC molecule \\
381 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
382 molecule \\
383 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
384 select all atoms
385 belonging to all rigid bodies within all DMPC molecules \\
386 \hline
387 \end{tabular}
388 \end{center}
389
390 \subsection{\label{appendixSection:index}Index expressions}
391
392 \begin{center}
393 \begin{tabular}{|lp{4in}|}
394 \hline
395 {\bf examples} & {\bf translation of examples} \\
396 \hline
397 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
398 select 20 to 30 & select all of the StuntDoubles belonging to
399 molecules which have global indices between 20 (inclusive) and 30
400 (exclusive) \\
401 \hline
402 \end{tabular}
403 \end{center}
404
405 \subsection{\label{appendixSection:predefined}Predefined sets}
406
407 \begin{center}
408 \begin{tabular}{|ll|}
409 \hline
410 {\bf keyword} & {\bf description} \\
411 \hline
412 all & select all StuntDoubles \\
413 none & select none of the StuntDoubles \\
414 \hline
415 \end{tabular}
416 \end{center}
417
418 \subsection{\label{appendixSection:userdefined}User-defined expressions}
419
420 Users can define arbitrary terms to represent groups of
421 StuntDoubles, and then use the define terms in select commands. The
422 general form for the define command is: {\bf define {\it term
423 expression}}. Once defined, the user can specify such terms in
424 boolean expressions
425
426 {\tt define SSDWATER SSD or SSD1 or SSDRF}
427
428 {\tt select SSDWATER}
429
430 \subsection{\label{appendixSection:comparison}Comparison expressions}
431
432 StuntDoubles can be selected by using comparision operators on their
433 properties. The general form for the comparison command is: a
434 property name, followed by a comparision operator and then a number.
435
436 \begin{center}
437 \begin{tabular}{|l|l|}
438 \hline
439 {\bf property} & mass, charge \\
440 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
441 ``$<=$'', ``$!=$'' \\
442 \hline
443 \end{tabular}
444 \end{center}
445
446 For example, the phrase {\tt select mass > 16.0 and charge < -2}
447 would select StuntDoubles which have mass greater than 16.0 and
448 charges less than -2.
449
450 \subsection{\label{appendixSection:within}Within expressions}
451
452 The ``within'' keyword allows the user to select all StuntDoubles
453 within the specified distance (in Angstroms) from a selection,
454 including the selected atom itself. The general form for within
455 selection is: {\tt select within(distance, expression)}
456
457 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
458 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
459 atoms.
460
461
462 \section{\label{appendixSection:analysisFramework}Analysis Framework}
463
464 \subsection{\label{appendixSection:StaticProps}StaticProps}
465
466 {\tt StaticProps} can compute properties which are averaged over
467 some or all of the configurations that are contained within a dump
468 file. The most common example of a static property that can be
469 computed is the pair distribution function between atoms of type $A$
470 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
471 also be used to compute the density distributions of other molecules
472 in a reference frame {\it fixed to the body-fixed reference frame}
473 of a selected atom or rigid body.
474
475 There are five seperate radial distribution functions availiable in
476 OOPSE. Since every radial distrbution function invlove the
477 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
478 -{}-sele2} must be specified to tell StaticProps which bodies to
479 include in the calculation.
480
481 \begin{description}
482 \item[{\tt -{}-gofr}] Computes the pair distribution function,
483 \begin{equation*}
484 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
485 \sum_{j \in B} \delta(r - r_{ij}) \rangle
486 \end{equation*}
487 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
488 function. The angle is defined by the intermolecular vector
489 $\vec{r}$ and $z$-axis of DirectionalAtom A,
490 \begin{equation*}
491 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
492 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
493 \theta_{ij} - \cos \theta)\rangle
494 \end{equation*}
495 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
496 function. The angle is defined by the $z$-axes of the two
497 DirectionalAtoms A and B.
498 \begin{equation*}
499 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
500 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
501 \omega_{ij} - \cos \omega)\rangle
502 \end{equation*}
503 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
504 space $\theta, \omega$ defined by the two angles mentioned above.
505 \begin{equation*}
506 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
507 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
508 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
509 \omega)\rangle
510 \end{equation*}
511 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
512 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
513 and {\tt -{}-refsele} must be given to define A's internal
514 coordinate set as the reference frame for the calculation.
515 \end{description}
516
517 The vectors (and angles) associated with these angular pair
518 distribution functions are most easily seen in the figure below:
519
520 \begin{figure}
521 \centering
522 \includegraphics[width=3in]{definition.eps}
523 \caption[Definitions of the angles between directional objects]{ \\
524 Any two directional objects (DirectionalAtoms and RigidBodies) have
525 a set of two angles ($\theta$, and $\omega$) between the z-axes of
526 their body-fixed frames.} \label{oopseFig:gofr}
527 \end{figure}
528
529 Due to the fact that the selected StuntDoubles from two selections
530 may be overlapped, {\tt StaticProps} performs the calculation in
531 three stages which are illustrated in
532 Fig.~\ref{oopseFig:staticPropsProcess}.
533
534 \begin{figure}
535 \centering
536 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
537 \caption[A representation of the three-stage correlations in
538 \texttt{StaticProps}]{This diagram illustrates three-stage
539 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
540 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
541 -{}-sele2} respectively, while $C$ is the number of stuntdobules
542 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
543 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
544 the contrary, the third stage($C$ and $C$) are completely
545 overlapping} \label{oopseFig:staticPropsProcess}
546 \end{figure}
547
548 The options available for {\tt StaticProps} are as follows:
549 \begin{longtable}[c]{|EFG|}
550 \caption{StaticProps Command-line Options}
551 \\ \hline
552 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
553 \endhead
554 \hline
555 \endfoot
556 -h& {\tt -{}-help} & Print help and exit \\
557 -V& {\tt -{}-version} & Print version and exit \\
558 -i& {\tt -{}-input} & input dump file \\
559 -o& {\tt -{}-output} & output file name \\
560 -n& {\tt -{}-step} & process every n frame (default=`1') \\
561 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
562 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
563 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
564 & {\tt -{}-sele1} & select the first StuntDouble set \\
565 & {\tt -{}-sele2} & select the second StuntDouble set \\
566 & {\tt -{}-sele3} & select the third StuntDouble set \\
567 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
568 & {\tt -{}-molname} & molecule name \\
569 & {\tt -{}-begin} & begin internal index \\
570 & {\tt -{}-end} & end internal index \\
571 \hline
572 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
573 \hline
574 & {\tt -{}-gofr} & $g(r)$ \\
575 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
576 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
577 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
578 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
579 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
580 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
581 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
582 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
583 \end{longtable}
584
585 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
586
587 {\tt DynamicProps} computes time correlation functions from the
588 configurations stored in a dump file. Typical examples of time
589 correlation functions are the mean square displacement and the
590 velocity autocorrelation functions. Once again, the selection
591 syntax can be used to specify the StuntDoubles that will be used for
592 the calculation. A general time correlation function can be thought
593 of as:
594 \begin{equation}
595 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
596 \end{equation}
597 where $\vec{u}_A(t)$ is a vector property associated with an atom of
598 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
599 vector property associated with an atom of type $B$ at a different
600 time $t^{\prime}$. In most autocorrelation functions, the vector
601 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
602 $B$) are identical, and the three calculations built in to {\tt
603 DynamicProps} make these assumptions. It is possible, however, to
604 make simple modifications to the {\tt DynamicProps} code to allow
605 the use of {\it cross} time correlation functions (i.e. with
606 different vectors). The ability to use two selection scripts to
607 select different types of atoms is already present in the code.
608
609 For large simulations, the trajectory files can sometimes reach
610 sizes in excess of several gigabytes. In order to effectively
611 analyze that amount of data. In order to prevent a situation where
612 the program runs out of memory due to large trajectories,
613 \texttt{dynamicProps} will estimate the size of free memory at
614 first, and determine the number of frames in each block, which
615 allows the operating system to load two blocks of data
616 simultaneously without swapping. Upon reading two blocks of the
617 trajectory, \texttt{dynamicProps} will calculate the time
618 correlation within the first block and the cross correlations
619 between the two blocks. This second block is then freed and then
620 incremented and the process repeated until the end of the
621 trajectory. Once the end is reached, the first block is freed then
622 incremented, until all frame pairs have been correlated in time.
623 This process is illustrated in
624 Fig.~\ref{oopseFig:dynamicPropsProcess}.
625
626 \begin{figure}
627 \centering
628 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
629 \caption[A representation of the block correlations in
630 \texttt{dynamicProps}]{This diagram illustrates block correlations
631 processing in \texttt{dynamicProps}. The shaded region represents
632 the self correlation of the block, and the open blocks are read one
633 at a time and the cross correlations between blocks are calculated.}
634 \label{oopseFig:dynamicPropsProcess}
635 \end{figure}
636
637 The options available for DynamicProps are as follows:
638 \begin{longtable}[c]{|EFG|}
639 \caption{DynamicProps Command-line Options}
640 \\ \hline
641 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
642 \endhead
643 \hline
644 \endfoot
645 -h& {\tt -{}-help} & Print help and exit \\
646 -V& {\tt -{}-version} & Print version and exit \\
647 -i& {\tt -{}-input} & input dump file \\
648 -o& {\tt -{}-output} & output file name \\
649 & {\tt -{}-sele1} & select first StuntDouble set \\
650 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
651 \hline
652 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
653 \hline
654 -r& {\tt -{}-rcorr} & compute mean square displacement \\
655 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
656 -d& {\tt -{}-dcorr} & compute dipole correlation function
657 \end{longtable}
658
659 \section{\label{appendixSection:tools}Other Useful Utilities}
660
661 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
662
663 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
664 which can be opened by other molecular dynamics viewers such as Jmol
665 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
666 as follows:
667
668
669 \begin{longtable}[c]{|EFG|}
670 \caption{Dump2XYZ Command-line Options}
671 \\ \hline
672 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
673 \endhead
674 \hline
675 \endfoot
676 -h & {\tt -{}-help} & Print help and exit \\
677 -V & {\tt -{}-version} & Print version and exit \\
678 -i & {\tt -{}-input} & input dump file \\
679 -o & {\tt -{}-output} & output file name \\
680 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
681 -w & {\tt -{}-water} & skip the the waters (default=off) \\
682 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
683 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
684 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
685 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
686 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
687 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
688 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
689 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
690 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
691 converted. \\
692 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
693 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
694 \end{longtable}
695
696 \subsection{\label{appendixSection:hydrodynamics}Hydro}
697
698 {\tt Hydro} can calculate resistance and diffusion tensors at the
699 center of resistance. Both tensors at the center of diffusion can
700 also be reported from the program, as well as the coordinates for
701 the beads which are used to approximate the arbitrary shapes. The
702 options available for Hydro are as follows:
703 \begin{longtable}[c]{|EFG|}
704 \caption{Hydrodynamics Command-line Options}
705 \\ \hline
706 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
707 \endhead
708 \hline
709 \endfoot
710 -h & {\tt -{}-help} & Print help and exit \\
711 -V & {\tt -{}-version} & Print version and exit \\
712 -i & {\tt -{}-input} & input dump file \\
713 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
714 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
715 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
716 \end{longtable}