ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2837
Committed: Fri Jun 9 02:20:39 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 33230 byte(s)
Log Message:
minor format change

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Designing object-oriented software is hard, and designing reusable
5 object-oriented scientific software is even harder. Absence of
6 applying modern software development practices is the bottleneck of
7 Scientific Computing community\cite{Wilson2006}. For instance, in
8 the last 20 years , there are quite a few MD packages that were
9 developed to solve common MD problems and perform robust simulations
10 . However, many of the codes are legacy programs that are either
11 poorly organized or extremely complex. Usually, these packages were
12 contributed by scientists without official computer science
13 training. The development of most MD applications are lack of strong
14 coordination to enforce design and programming guidelines. Moreover,
15 most MD programs also suffer from missing design and implement
16 documents which is crucial to the maintenance and extensibility.
17 Along the way of studying structural and dynamic processes in
18 condensed phase systems like biological membranes and nanoparticles,
19 we developed and maintained an Object-Oriented Parallel Simulation
20 Engine ({\sc OOPSE}). This new molecular dynamics package has some
21 unique features
22 \begin{enumerate}
23 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
24 atom types (transition metals, point dipoles, sticky potentials,
25 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
26 degrees of freedom), as well as rigid bodies.
27 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
28 Beowulf clusters to obtain very efficient parallelism.
29 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
30 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
31 ensembles.
32 \item {\sc OOPSE} can carry out simulations on metallic systems using the
33 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
34 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
35 \item {\sc OOPSE} can simulate systems containing the extremely efficient
36 extended-Soft Sticky Dipole (SSD/E) model for water.
37 \end{enumerate}
38
39 \section{\label{appendixSection:architecture }Architecture}
40
41 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
42 uses C++ Standard Template Library (STL) and fortran modules as the
43 foundation. As an extensive set of the STL and Fortran90 modules,
44 {\sc Base Classes} provide generic implementations of mathematical
45 objects (e.g., matrices, vectors, polynomials, random number
46 generators) and advanced data structures and algorithms(e.g., tuple,
47 bitset, generic data, string manipulation). The molecular data
48 structures for the representation of atoms, bonds, bends, torsions,
49 rigid bodies and molecules \textit{etc} are contained in the {\sc
50 Kernel} which is implemented with {\sc Base Classes} and are
51 carefully designed to provide maximum extensibility and flexibility.
52 The functionality required for applications is provide by the third
53 layer which contains Input/Output, Molecular Mechanics and Structure
54 modules. Input/Output module not only implements general methods for
55 file handling, but also defines a generic force field interface.
56 Another important component of Input/Output module is the meta-data
57 file parser, which is rewritten using ANother Tool for Language
58 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
59 Mechanics module consists of energy minimization and a wide
60 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
61 The structure module contains a flexible and powerful selection
62 library which syntax is elaborated in
63 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
64 program of the package, \texttt{oopse} and it corresponding parallel
65 version \texttt{oopse\_MPI}, as well as other useful utilities, such
66 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
67 \texttt{DynamicProps} (see
68 Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
69 \texttt{Dump2XYZ} (see
70 Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
72 \textit{etc}.
73
74 \begin{figure}
75 \centering
76 \includegraphics[width=\linewidth]{architecture.eps}
77 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
78 of {\sc OOPSE}} \label{appendixFig:architecture}
79 \end{figure}
80
81 \section{\label{appendixSection:desginPattern}Design Pattern}
82
83 Design patterns are optimal solutions to commonly-occurring problems
84 in software design. Although originated as an architectural concept
85 for buildings and towns by Christopher Alexander
86 \cite{Alexander1987}, software patterns first became popular with
87 the wide acceptance of the book, Design Patterns: Elements of
88 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
89 the experience, knowledge and insights of developers who have
90 successfully used these patterns in their own work. Patterns are
91 reusable. They provide a ready-made solution that can be adapted to
92 different problems as necessary. Pattern are expressive. they
93 provide a common vocabulary of solutions that can express large
94 solutions succinctly.
95
96 Patterns are usually described using a format that includes the
97 following information:
98 \begin{enumerate}
99 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
100 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
101 in the literature. In this case it is common practice to document these nicknames or synonyms under
102 the heading of \emph{Aliases} or \emph{Also Known As}.
103 \item The \emph{motivation} or \emph{context} that this pattern applies
104 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
105 \item The \emph{solution} to the problem that the pattern
106 addresses. It describes how to construct the necessary work products. The description may include
107 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
108 collaborations, to show how the problem is solved.
109 \item The \emph{consequences} of using the given solution to solve a
110 problem, both positive and negative.
111 \end{enumerate}
112
113 As one of the latest advanced techniques emerged from
114 object-oriented community, design patterns were applied in some of
115 the modern scientific software applications, such as JMol, {\sc
116 OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
117 The following sections enumerates some of the patterns used in {\sc
118 OOPSE}.
119
120 \subsection{\label{appendixSection:singleton}Singleton}
121
122 The Singleton pattern not only provides a mechanism to restrict
123 instantiation of a class to one object, but also provides a global
124 point of access to the object. Currently implemented as a global
125 variable, the logging utility which reports error and warning
126 messages to the console in {\sc OOPSE} is a good candidate for
127 applying the Singleton pattern to avoid the global namespace
128 pollution.Although the singleton pattern can be implemented in
129 various ways to account for different aspects of the software
130 designs, such as lifespan control \textit{etc}, we only use the
131 static data approach in {\sc OOPSE}. IntegratorFactory class is
132 declared as
133
134 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
135
136 class IntegratorFactory {
137 public:
138 static IntegratorFactory*
139 getInstance();
140 protected:
141 IntegratorFactory();
142 private:
143 static IntegratorFactory* instance_;
144 };
145
146 \end{lstlisting}
147
148 The corresponding implementation is
149
150 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
151
152 IntegratorFactory::instance_ = NULL;
153
154 IntegratorFactory* getInstance() {
155 if (instance_ == NULL){
156 instance_ = new IntegratorFactory;
157 }
158 return instance_;
159 }
160
161 \end{lstlisting}
162
163 Since constructor is declared as protected, a client can not
164 instantiate IntegratorFactory directly. Moreover, since the member
165 function getInstance serves as the only entry of access to
166 IntegratorFactory, this approach fulfills the basic requirement, a
167 single instance. Another consequence of this approach is the
168 automatic destruction since static data are destroyed upon program
169 termination.
170
171 \subsection{\label{appendixSection:factoryMethod}Factory Method}
172
173 Categoried as a creational pattern, the Factory Method pattern deals
174 with the problem of creating objects without specifying the exact
175 class of object that will be created. Factory Method is typically
176 implemented by delegating the creation operation to the subclasses.
177 Parameterized Factory pattern where factory method (
178 createIntegrator member function) creates products based on the
179 identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
180 the identifier has been already registered, the factory method will
181 invoke the corresponding creator (see List.~\ref{integratorCreator})
182 which utilizes the modern C++ template technique to avoid excess
183 subclassing.
184
185 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
186
187 class IntegratorFactory {
188 public:
189 typedef std::map<string, IntegratorCreator*> CreatorMapType;
190
191 bool registerIntegrator(IntegratorCreator* creator) {
192 return creatorMap_.insert(creator->getIdent(), creator).second;
193 }
194
195 Integrator* createIntegrator(const string& id, SimInfo* info) {
196 Integrator* result = NULL;
197 CreatorMapType::iterator i = creatorMap_.find(id);
198 if (i != creatorMap_.end()) {
199 result = (i->second)->create(info);
200 }
201 return result;
202 }
203
204 private:
205 CreatorMapType creatorMap_;
206 };
207 \end{lstlisting}
208
209 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
210
211 class IntegratorCreator {
212 public:
213 IntegratorCreator(const string& ident) : ident_(ident) {}
214
215 const string& getIdent() const { return ident_; }
216
217 virtual Integrator* create(SimInfo* info) const = 0;
218
219 private:
220 string ident_;
221 };
222
223 template<class ConcreteIntegrator>
224 class IntegratorBuilder : public IntegratorCreator {
225 public:
226 IntegratorBuilder(const string& ident)
227 : IntegratorCreator(ident) {}
228 virtual Integrator* create(SimInfo* info) const {
229 return new ConcreteIntegrator(info);
230 }
231 };
232 \end{lstlisting}
233
234 \subsection{\label{appendixSection:visitorPattern}Visitor}
235
236 The visitor pattern is designed to decouple the data structure and
237 algorithms used upon them by collecting related operation from
238 element classes into other visitor classes, which is equivalent to
239 adding virtual functions into a set of classes without modifying
240 their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
241 structure of Visitor pattern which is used extensively in {\tt
242 Dump2XYZ}. In order to convert an OOPSE dump file, a series of
243 distinct operations are performed on different StuntDoubles (See the
244 class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
245 in List.~\ref{appendixScheme:element}). Since the hierarchies
246 remains stable, it is easy to define a visit operation (see
247 List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
248 Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
249 manages a priority visitor list and handles the execution of every
250 visitor in the priority list on different StuntDoubles.
251
252 \begin{figure}
253 \centering
254 \includegraphics[width=\linewidth]{visitor.eps}
255 \caption[The UML class diagram of Visitor patten] {The UML class
256 diagram of Visitor patten.} \label{appendixFig:visitorUML}
257 \end{figure}
258
259 %\begin{figure}
260 %\centering
261 %\includegraphics[width=\linewidth]{hierarchy.eps}
262 %\caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
263 %the class hierarchy.
264 %\begin{itemize}
265 %\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
266 %integrators and minimizers.
267 %\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
268 %\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
269 %\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
270 %DirectionalAtom}s which behaves as a single unit.
271 %\end{itemize}
272 %} \label{oopseFig:hierarchy}
273 %\end{figure}
274
275 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
276
277 class StuntDouble { public:
278 virtual void accept(BaseVisitor* v) = 0;
279 };
280
281 class Atom: public StuntDouble { public:
282 virtual void accept{BaseVisitor* v*} {
283 v->visit(this);
284 }
285 };
286
287 class DirectionalAtom: public Atom { public:
288 virtual void accept{BaseVisitor* v*} {
289 v->visit(this);
290 }
291 };
292
293 class RigidBody: public StuntDouble { public:
294 virtual void accept{BaseVisitor* v*} {
295 v->visit(this);
296 }
297 };
298
299 \end{lstlisting}
300
301 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
302
303 class BaseVisitor{
304 public:
305 virtual void visit(Atom* atom);
306 virtual void visit(DirectionalAtom* datom);
307 virtual void visit(RigidBody* rb);
308 };
309
310 class BaseAtomVisitor:public BaseVisitor{ public:
311 virtual void visit(Atom* atom);
312 virtual void visit(DirectionalAtom* datom);
313 virtual void visit(RigidBody* rb);
314 };
315
316 class SSDAtomVisitor:public BaseAtomVisitor{ public:
317 virtual void visit(Atom* atom);
318 virtual void visit(DirectionalAtom* datom);
319 virtual void visit(RigidBody* rb);
320 };
321
322 class CompositeVisitor: public BaseVisitor {
323 public:
324
325 typedef list<pair<BaseVisitor*, int> > VistorListType;
326 typedef VistorListType::iterator VisitorListIterator;
327 virtual void visit(Atom* atom) {
328 VisitorListIterator i;
329 BaseVisitor* curVisitor;
330 for(i = visitorList.begin();i != visitorList.end();++i) {
331 atom->accept(*i);
332 }
333 }
334
335 virtual void visit(DirectionalAtom* datom) {
336 VisitorListIterator i;
337 BaseVisitor* curVisitor;
338 for(i = visitorList.begin();i != visitorList.end();++i) {
339 atom->accept(*i);
340 }
341 }
342
343 virtual void visit(RigidBody* rb) {
344 VisitorListIterator i;
345 std::vector<Atom*> myAtoms;
346 std::vector<Atom*>::iterator ai;
347 myAtoms = rb->getAtoms();
348 for(i = visitorList.begin();i != visitorList.end();++i) {{
349 rb->accept(*i);
350 for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
351 (*ai)->accept(*i);
352 }
353 }
354
355 void addVisitor(BaseVisitor* v, int priority);
356
357 protected:
358 VistorListType visitorList;
359 };
360
361 \end{lstlisting}
362
363 \section{\label{appendixSection:concepts}Concepts}
364
365 OOPSE manipulates both traditional atoms as well as some objects
366 that {\it behave like atoms}. These objects can be rigid
367 collections of atoms or atoms which have orientational degrees of
368 freedom. A diagram of the class hierarchy is illustrated in
369 Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
370 DirectionalAtom in {\sc OOPSE} have their own names which are
371 specified in the {\tt .md} file. In contrast, RigidBodies are
372 denoted by their membership and index inside a particular molecule:
373 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
374 on the specifics of the simulation). The names of rigid bodies are
375 generated automatically. For example, the name of the first rigid
376 body in a DMPC molecule is DMPC\_RB\_0.
377
378 \section{\label{appendixSection:syntax}Syntax of the Select Command}
379
380 {\sc OOPSE} provides a powerful selection utility to select
381 StuntDoubles. The most general form of the select command is:
382
383 {\tt select {\it expression}}.
384
385 This expression represents an arbitrary set of StuntDoubles (Atoms
386 or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
387 name expressions, index expressions, predefined sets, user-defined
388 expressions, comparison operators, within expressions, or logical
389 combinations of the above expression types. Expressions can be
390 combined using parentheses and the Boolean operators.
391
392 \subsection{\label{appendixSection:logical}Logical expressions}
393
394 The logical operators allow complex queries to be constructed out of
395 simpler ones using the standard boolean connectives {\bf and}, {\bf
396 or}, {\bf not}. Parentheses can be used to alter the precedence of
397 the operators.
398
399 \begin{center}
400 \begin{tabular}{|ll|}
401 \hline
402 {\bf logical operator} & {\bf equivalent operator} \\
403 \hline
404 and & ``\&'', ``\&\&'' \\
405 or & ``$|$'', ``$||$'', ``,'' \\
406 not & ``!'' \\
407 \hline
408 \end{tabular}
409 \end{center}
410
411 \subsection{\label{appendixSection:name}Name expressions}
412
413 \begin{center}
414 \begin{tabular}{|llp{2in}|}
415 \hline {\bf type of expression} & {\bf examples} & {\bf translation
416 of
417 examples} \\
418 \hline expression without ``.'' & select DMPC & select all
419 StuntDoubles
420 belonging to all DMPC molecules \\
421 & select C* & select all atoms which have atom types beginning with C
422 \\
423 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
424 only select the rigid bodies, and not the atoms belonging to them). \\
425 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
426 O\_TIP3P
427 atoms belonging to TIP3P molecules \\
428 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
429 the first
430 RigidBody in each DMPC molecule \\
431 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
432 molecule \\
433 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
434 select all atoms
435 belonging to all rigid bodies within all DMPC molecules \\
436 \hline
437 \end{tabular}
438 \end{center}
439
440 \subsection{\label{appendixSection:index}Index expressions}
441
442 \begin{center}
443 \begin{tabular}{|lp{4in}|}
444 \hline
445 {\bf examples} & {\bf translation of examples} \\
446 \hline
447 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
448 select 20 to 30 & select all of the StuntDoubles belonging to
449 molecules which have global indices between 20 (inclusive) and 30
450 (exclusive) \\
451 \hline
452 \end{tabular}
453 \end{center}
454
455 \subsection{\label{appendixSection:predefined}Predefined sets}
456
457 \begin{center}
458 \begin{tabular}{|ll|}
459 \hline
460 {\bf keyword} & {\bf description} \\
461 \hline
462 all & select all StuntDoubles \\
463 none & select none of the StuntDoubles \\
464 \hline
465 \end{tabular}
466 \end{center}
467
468 \subsection{\label{appendixSection:userdefined}User-defined expressions}
469
470 Users can define arbitrary terms to represent groups of
471 StuntDoubles, and then use the define terms in select commands. The
472 general form for the define command is: {\bf define {\it term
473 expression}}. Once defined, the user can specify such terms in
474 boolean expressions
475
476 {\tt define SSDWATER SSD or SSD1 or SSDRF}
477
478 {\tt select SSDWATER}
479
480 \subsection{\label{appendixSection:comparison}Comparison expressions}
481
482 StuntDoubles can be selected by using comparision operators on their
483 properties. The general form for the comparison command is: a
484 property name, followed by a comparision operator and then a number.
485
486 \begin{center}
487 \begin{tabular}{|l|l|}
488 \hline
489 {\bf property} & mass, charge \\
490 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
491 ``$<=$'', ``$!=$'' \\
492 \hline
493 \end{tabular}
494 \end{center}
495
496 For example, the phrase {\tt select mass > 16.0 and charge < -2}
497 would select StuntDoubles which have mass greater than 16.0 and
498 charges less than -2.
499
500 \subsection{\label{appendixSection:within}Within expressions}
501
502 The ``within'' keyword allows the user to select all StuntDoubles
503 within the specified distance (in Angstroms) from a selection,
504 including the selected atom itself. The general form for within
505 selection is: {\tt select within(distance, expression)}
506
507 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
508 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
509 atoms.
510
511
512 \section{\label{appendixSection:analysisFramework}Analysis Framework}
513
514 \subsection{\label{appendixSection:StaticProps}StaticProps}
515
516 {\tt StaticProps} can compute properties which are averaged over
517 some or all of the configurations that are contained within a dump
518 file. The most common example of a static property that can be
519 computed is the pair distribution function between atoms of type $A$
520 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
521 also be used to compute the density distributions of other molecules
522 in a reference frame {\it fixed to the body-fixed reference frame}
523 of a selected atom or rigid body.
524
525 There are five seperate radial distribution functions availiable in
526 OOPSE. Since every radial distrbution function invlove the
527 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
528 -{}-sele2} must be specified to tell StaticProps which bodies to
529 include in the calculation.
530
531 \begin{description}
532 \item[{\tt -{}-gofr}] Computes the pair distribution function,
533 \begin{equation*}
534 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
535 \sum_{j \in B} \delta(r - r_{ij}) \rangle
536 \end{equation*}
537 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
538 function. The angle is defined by the intermolecular vector
539 $\vec{r}$ and $z$-axis of DirectionalAtom A,
540 \begin{equation*}
541 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
542 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
543 \theta_{ij} - \cos \theta)\rangle
544 \end{equation*}
545 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
546 function. The angle is defined by the $z$-axes of the two
547 DirectionalAtoms A and B.
548 \begin{equation*}
549 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
550 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
551 \omega_{ij} - \cos \omega)\rangle
552 \end{equation*}
553 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
554 space $\theta, \omega$ defined by the two angles mentioned above.
555 \begin{equation*}
556 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
557 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
558 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
559 \omega)\rangle
560 \end{equation*}
561 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
562 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
563 and {\tt -{}-refsele} must be given to define A's internal
564 coordinate set as the reference frame for the calculation.
565 \end{description}
566
567 The vectors (and angles) associated with these angular pair
568 distribution functions are most easily seen in the figure below:
569
570 \begin{figure}
571 \centering
572 \includegraphics[width=3in]{definition.eps}
573 \caption[Definitions of the angles between directional objects]{ \\
574 Any two directional objects (DirectionalAtoms and RigidBodies) have
575 a set of two angles ($\theta$, and $\omega$) between the z-axes of
576 their body-fixed frames.} \label{oopseFig:gofr}
577 \end{figure}
578
579 Due to the fact that the selected StuntDoubles from two selections
580 may be overlapped, {\tt StaticProps} performs the calculation in
581 three stages which are illustrated in
582 Fig.~\ref{oopseFig:staticPropsProcess}.
583
584 \begin{figure}
585 \centering
586 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
587 \caption[A representation of the three-stage correlations in
588 \texttt{StaticProps}]{This diagram illustrates three-stage
589 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
590 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
591 -{}-sele2} respectively, while $C$ is the number of stuntdobules
592 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
593 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
594 the contrary, the third stage($C$ and $C$) are completely
595 overlapping} \label{oopseFig:staticPropsProcess}
596 \end{figure}
597
598 The options available for {\tt StaticProps} are as follows:
599 \begin{longtable}[c]{|EFG|}
600 \caption{StaticProps Command-line Options}
601 \\ \hline
602 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
603 \endhead
604 \hline
605 \endfoot
606 -h& {\tt -{}-help} & Print help and exit \\
607 -V& {\tt -{}-version} & Print version and exit \\
608 -i& {\tt -{}-input} & input dump file \\
609 -o& {\tt -{}-output} & output file name \\
610 -n& {\tt -{}-step} & process every n frame (default=`1') \\
611 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
612 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
613 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
614 & {\tt -{}-sele1} & select the first StuntDouble set \\
615 & {\tt -{}-sele2} & select the second StuntDouble set \\
616 & {\tt -{}-sele3} & select the third StuntDouble set \\
617 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
618 & {\tt -{}-molname} & molecule name \\
619 & {\tt -{}-begin} & begin internal index \\
620 & {\tt -{}-end} & end internal index \\
621 \hline
622 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
623 \hline
624 & {\tt -{}-gofr} & $g(r)$ \\
625 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
626 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
627 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
628 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
629 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
630 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
631 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
632 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
633 \end{longtable}
634
635 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
636
637 {\tt DynamicProps} computes time correlation functions from the
638 configurations stored in a dump file. Typical examples of time
639 correlation functions are the mean square displacement and the
640 velocity autocorrelation functions. Once again, the selection
641 syntax can be used to specify the StuntDoubles that will be used for
642 the calculation. A general time correlation function can be thought
643 of as:
644 \begin{equation}
645 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
646 \end{equation}
647 where $\vec{u}_A(t)$ is a vector property associated with an atom of
648 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
649 vector property associated with an atom of type $B$ at a different
650 time $t^{\prime}$. In most autocorrelation functions, the vector
651 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
652 $B$) are identical, and the three calculations built in to {\tt
653 DynamicProps} make these assumptions. It is possible, however, to
654 make simple modifications to the {\tt DynamicProps} code to allow
655 the use of {\it cross} time correlation functions (i.e. with
656 different vectors). The ability to use two selection scripts to
657 select different types of atoms is already present in the code.
658
659 For large simulations, the trajectory files can sometimes reach
660 sizes in excess of several gigabytes. In order to effectively
661 analyze that amount of data. In order to prevent a situation where
662 the program runs out of memory due to large trajectories,
663 \texttt{dynamicProps} will estimate the size of free memory at
664 first, and determine the number of frames in each block, which
665 allows the operating system to load two blocks of data
666 simultaneously without swapping. Upon reading two blocks of the
667 trajectory, \texttt{dynamicProps} will calculate the time
668 correlation within the first block and the cross correlations
669 between the two blocks. This second block is then freed and then
670 incremented and the process repeated until the end of the
671 trajectory. Once the end is reached, the first block is freed then
672 incremented, until all frame pairs have been correlated in time.
673 This process is illustrated in
674 Fig.~\ref{oopseFig:dynamicPropsProcess}.
675
676 \begin{figure}
677 \centering
678 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
679 \caption[A representation of the block correlations in
680 \texttt{dynamicProps}]{This diagram illustrates block correlations
681 processing in \texttt{dynamicProps}. The shaded region represents
682 the self correlation of the block, and the open blocks are read one
683 at a time and the cross correlations between blocks are calculated.}
684 \label{oopseFig:dynamicPropsProcess}
685 \end{figure}
686
687 The options available for DynamicProps are as follows:
688 \begin{longtable}[c]{|EFG|}
689 \caption{DynamicProps Command-line Options}
690 \\ \hline
691 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
692 \endhead
693 \hline
694 \endfoot
695 -h& {\tt -{}-help} & Print help and exit \\
696 -V& {\tt -{}-version} & Print version and exit \\
697 -i& {\tt -{}-input} & input dump file \\
698 -o& {\tt -{}-output} & output file name \\
699 & {\tt -{}-sele1} & select first StuntDouble set \\
700 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
701 \hline
702 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
703 \hline
704 -r& {\tt -{}-rcorr} & compute mean square displacement \\
705 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
706 -d& {\tt -{}-dcorr} & compute dipole correlation function
707 \end{longtable}
708
709 \section{\label{appendixSection:tools}Other Useful Utilities}
710
711 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
712
713 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
714 which can be opened by other molecular dynamics viewers such as Jmol
715 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
716 as follows:
717
718
719 \begin{longtable}[c]{|EFG|}
720 \caption{Dump2XYZ Command-line Options}
721 \\ \hline
722 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
723 \endhead
724 \hline
725 \endfoot
726 -h & {\tt -{}-help} & Print help and exit \\
727 -V & {\tt -{}-version} & Print version and exit \\
728 -i & {\tt -{}-input} & input dump file \\
729 -o & {\tt -{}-output} & output file name \\
730 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
731 -w & {\tt -{}-water} & skip the the waters (default=off) \\
732 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
733 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
734 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
735 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
736 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
737 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
738 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
739 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
740 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
741 converted. \\
742 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
743 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
744 \end{longtable}
745
746 \subsection{\label{appendixSection:hydrodynamics}Hydro}
747
748 {\tt Hydro} can calculate resistance and diffusion tensors at the
749 center of resistance. Both tensors at the center of diffusion can
750 also be reported from the program, as well as the coordinates for
751 the beads which are used to approximate the arbitrary shapes. The
752 options available for Hydro are as follows:
753 \begin{longtable}[c]{|EFG|}
754 \caption{Hydrodynamics Command-line Options}
755 \\ \hline
756 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
757 \endhead
758 \hline
759 \endfoot
760 -h & {\tt -{}-help} & Print help and exit \\
761 -V & {\tt -{}-version} & Print version and exit \\
762 -i & {\tt -{}-input} & input dump file \\
763 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
764 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
765 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
766 \end{longtable}