ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2840
Committed: Fri Jun 9 02:54:01 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 33038 byte(s)
Log Message:
more reference fixes

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Absence of applying modern software development practices is the
5 bottleneck of Scientific Computing community\cite{Wilson2006}. In
6 the last 20 years , there are quite a few MD packages that were
7 developed to solve common MD problems and perform robust simulations
8 . However, many of the codes are legacy programs that are either
9 poorly organized or extremely complex. Usually, these packages were
10 contributed by scientists without official computer science
11 training. The development of most MD applications are lack of strong
12 coordination to enforce design and programming guidelines. Moreover,
13 most MD programs also suffer from missing design and implement
14 documents which is crucial to the maintenance and extensibility.
15 Along the way of studying structural and dynamic processes in
16 condensed phase systems like biological membranes and nanoparticles,
17 we developed and maintained an Object-Oriented Parallel Simulation
18 Engine ({\sc OOPSE}). This new molecular dynamics package has some
19 unique features
20 \begin{enumerate}
21 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
22 atom types (transition metals, point dipoles, sticky potentials,
23 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
24 degrees of freedom), as well as rigid bodies.
25 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
26 Beowulf clusters to obtain very efficient parallelism.
27 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
28 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
29 ensembles.
30 \item {\sc OOPSE} can carry out simulations on metallic systems using the
31 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
32 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
33 \item {\sc OOPSE} can simulate systems containing the extremely efficient
34 extended-Soft Sticky Dipole (SSD/E) model for water.
35 \end{enumerate}
36
37 \section{\label{appendixSection:architecture }Architecture}
38
39 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
40 uses C++ Standard Template Library (STL) and fortran modules as the
41 foundation. As an extensive set of the STL and Fortran90 modules,
42 {\sc Base Classes} provide generic implementations of mathematical
43 objects (e.g., matrices, vectors, polynomials, random number
44 generators) and advanced data structures and algorithms(e.g., tuple,
45 bitset, generic data, string manipulation). The molecular data
46 structures for the representation of atoms, bonds, bends, torsions,
47 rigid bodies and molecules \textit{etc} are contained in the {\sc
48 Kernel} which is implemented with {\sc Base Classes} and are
49 carefully designed to provide maximum extensibility and flexibility.
50 The functionality required for applications is provide by the third
51 layer which contains Input/Output, Molecular Mechanics and Structure
52 modules. Input/Output module not only implements general methods for
53 file handling, but also defines a generic force field interface.
54 Another important component of Input/Output module is the meta-data
55 file parser, which is rewritten using ANother Tool for Language
56 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
57 Mechanics module consists of energy minimization and a wide
58 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
59 The structure module contains a flexible and powerful selection
60 library which syntax is elaborated in
61 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
62 program of the package, \texttt{oopse} and it corresponding parallel
63 version \texttt{oopse\_MPI}, as well as other useful utilities, such
64 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
65 \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
66 \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
67 \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
68 \textit{etc}.
69
70 \begin{figure}
71 \centering
72 \includegraphics[width=\linewidth]{architecture.eps}
73 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
74 of {\sc OOPSE}} \label{appendixFig:architecture}
75 \end{figure}
76
77 \section{\label{appendixSection:desginPattern}Design Pattern}
78
79 Design patterns are optimal solutions to commonly-occurring problems
80 in software design. Although originated as an architectural concept
81 for buildings and towns by Christopher Alexander
82 \cite{Alexander1987}, software patterns first became popular with
83 the wide acceptance of the book, Design Patterns: Elements of
84 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
85 the experience, knowledge and insights of developers who have
86 successfully used these patterns in their own work. Patterns are
87 reusable. They provide a ready-made solution that can be adapted to
88 different problems as necessary. Pattern are expressive. they
89 provide a common vocabulary of solutions that can express large
90 solutions succinctly.
91
92 Patterns are usually described using a format that includes the
93 following information:
94 \begin{enumerate}
95 \item The \emph{name} that is commonly used for the pattern. Good pattern names form a vocabulary for
96 discussing conceptual abstractions. a pattern may have more than one commonly used or recognizable name
97 in the literature. In this case it is common practice to document these nicknames or synonyms under
98 the heading of \emph{Aliases} or \emph{Also Known As}.
99 \item The \emph{motivation} or \emph{context} that this pattern applies
100 to. Sometimes, it will include some prerequisites that should be satisfied before deciding to use a pattern
101 \item The \emph{solution} to the problem that the pattern
102 addresses. It describes how to construct the necessary work products. The description may include
103 pictures, diagrams and prose which identify the pattern's structure, its participants, and their
104 collaborations, to show how the problem is solved.
105 \item The \emph{consequences} of using the given solution to solve a
106 problem, both positive and negative.
107 \end{enumerate}
108
109 As one of the latest advanced techniques emerged from
110 object-oriented community, design patterns were applied in some of
111 the modern scientific software applications, such as JMol, {\sc
112 OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2005}
113 \textit{etc}. The following sections enumerates some of the patterns
114 used in {\sc OOPSE}.
115
116 \subsection{\label{appendixSection:singleton}Singleton}
117
118 The Singleton pattern not only provides a mechanism to restrict
119 instantiation of a class to one object, but also provides a global
120 point of access to the object. Currently implemented as a global
121 variable, the logging utility which reports error and warning
122 messages to the console in {\sc OOPSE} is a good candidate for
123 applying the Singleton pattern to avoid the global namespace
124 pollution.Although the singleton pattern can be implemented in
125 various ways to account for different aspects of the software
126 designs, such as lifespan control \textit{etc}, we only use the
127 static data approach in {\sc OOPSE}. IntegratorFactory class is
128 declared as
129
130 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
131
132 class IntegratorFactory {
133 public:
134 static IntegratorFactory*
135 getInstance();
136 protected:
137 IntegratorFactory();
138 private:
139 static IntegratorFactory* instance_;
140 };
141
142 \end{lstlisting}
143
144 The corresponding implementation is
145
146 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
147
148 IntegratorFactory::instance_ = NULL;
149
150 IntegratorFactory* getInstance() {
151 if (instance_ == NULL){
152 instance_ = new IntegratorFactory;
153 }
154 return instance_;
155 }
156
157 \end{lstlisting}
158
159 Since constructor is declared as protected, a client can not
160 instantiate IntegratorFactory directly. Moreover, since the member
161 function getInstance serves as the only entry of access to
162 IntegratorFactory, this approach fulfills the basic requirement, a
163 single instance. Another consequence of this approach is the
164 automatic destruction since static data are destroyed upon program
165 termination.
166
167 \subsection{\label{appendixSection:factoryMethod}Factory Method}
168
169 Categoried as a creational pattern, the Factory Method pattern deals
170 with the problem of creating objects without specifying the exact
171 class of object that will be created. Factory Method is typically
172 implemented by delegating the creation operation to the subclasses.
173 Parameterized Factory pattern where factory method (
174 createIntegrator member function) creates products based on the
175 identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
176 the identifier has been already registered, the factory method will
177 invoke the corresponding creator (see List.~\ref{integratorCreator})
178 which utilizes the modern C++ template technique to avoid excess
179 subclassing.
180
181 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
182
183 class IntegratorFactory {
184 public:
185 typedef std::map<string, IntegratorCreator*> CreatorMapType;
186
187 bool registerIntegrator(IntegratorCreator* creator) {
188 return creatorMap_.insert(creator->getIdent(), creator).second;
189 }
190
191 Integrator* createIntegrator(const string& id, SimInfo* info) {
192 Integrator* result = NULL;
193 CreatorMapType::iterator i = creatorMap_.find(id);
194 if (i != creatorMap_.end()) {
195 result = (i->second)->create(info);
196 }
197 return result;
198 }
199
200 private:
201 CreatorMapType creatorMap_;
202 };
203 \end{lstlisting}
204
205 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
206
207 class IntegratorCreator {
208 public:
209 IntegratorCreator(const string& ident) : ident_(ident) {}
210
211 const string& getIdent() const { return ident_; }
212
213 virtual Integrator* create(SimInfo* info) const = 0;
214
215 private:
216 string ident_;
217 };
218
219 template<class ConcreteIntegrator>
220 class IntegratorBuilder : public IntegratorCreator {
221 public:
222 IntegratorBuilder(const string& ident)
223 : IntegratorCreator(ident) {}
224 virtual Integrator* create(SimInfo* info) const {
225 return new ConcreteIntegrator(info);
226 }
227 };
228 \end{lstlisting}
229
230 \subsection{\label{appendixSection:visitorPattern}Visitor}
231
232 The visitor pattern is designed to decouple the data structure and
233 algorithms used upon them by collecting related operation from
234 element classes into other visitor classes, which is equivalent to
235 adding virtual functions into a set of classes without modifying
236 their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
237 structure of Visitor pattern which is used extensively in {\tt
238 Dump2XYZ}. In order to convert an OOPSE dump file, a series of
239 distinct operations are performed on different StuntDoubles (See the
240 class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
241 in List.~\ref{appendixScheme:element}). Since the hierarchies
242 remains stable, it is easy to define a visit operation (see
243 List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
244 Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
245 manages a priority visitor list and handles the execution of every
246 visitor in the priority list on different StuntDoubles.
247
248 \begin{figure}
249 \centering
250 \includegraphics[width=\linewidth]{visitor.eps}
251 \caption[The UML class diagram of Visitor patten] {The UML class
252 diagram of Visitor patten.} \label{appendixFig:visitorUML}
253 \end{figure}
254
255 \begin{figure}
256 \centering
257 \includegraphics[width=\linewidth]{hierarchy.eps}
258 \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
259 the class hierarchy. } \label{oopseFig:hierarchy}
260 \end{figure}
261
262 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
263
264 class StuntDouble { public:
265 virtual void accept(BaseVisitor* v) = 0;
266 };
267
268 class Atom: public StuntDouble { public:
269 virtual void accept{BaseVisitor* v*} {
270 v->visit(this);
271 }
272 };
273
274 class DirectionalAtom: public Atom { public:
275 virtual void accept{BaseVisitor* v*} {
276 v->visit(this);
277 }
278 };
279
280 class RigidBody: public StuntDouble { public:
281 virtual void accept{BaseVisitor* v*} {
282 v->visit(this);
283 }
284 };
285
286 \end{lstlisting}
287
288 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
289
290 class BaseVisitor{
291 public:
292 virtual void visit(Atom* atom);
293 virtual void visit(DirectionalAtom* datom);
294 virtual void visit(RigidBody* rb);
295 };
296
297 class BaseAtomVisitor:public BaseVisitor{ public:
298 virtual void visit(Atom* atom);
299 virtual void visit(DirectionalAtom* datom);
300 virtual void visit(RigidBody* rb);
301 };
302
303 class SSDAtomVisitor:public BaseAtomVisitor{ public:
304 virtual void visit(Atom* atom);
305 virtual void visit(DirectionalAtom* datom);
306 virtual void visit(RigidBody* rb);
307 };
308
309 class CompositeVisitor: public BaseVisitor {
310 public:
311
312 typedef list<pair<BaseVisitor*, int> > VistorListType;
313 typedef VistorListType::iterator VisitorListIterator;
314 virtual void visit(Atom* atom) {
315 VisitorListIterator i;
316 BaseVisitor* curVisitor;
317 for(i = visitorList.begin();i != visitorList.end();++i) {
318 atom->accept(*i);
319 }
320 }
321
322 virtual void visit(DirectionalAtom* datom) {
323 VisitorListIterator i;
324 BaseVisitor* curVisitor;
325 for(i = visitorList.begin();i != visitorList.end();++i) {
326 atom->accept(*i);
327 }
328 }
329
330 virtual void visit(RigidBody* rb) {
331 VisitorListIterator i;
332 std::vector<Atom*> myAtoms;
333 std::vector<Atom*>::iterator ai;
334 myAtoms = rb->getAtoms();
335 for(i = visitorList.begin();i != visitorList.end();++i) {{
336 rb->accept(*i);
337 for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
338 (*ai)->accept(*i);
339 }
340 }
341
342 void addVisitor(BaseVisitor* v, int priority);
343
344 protected:
345 VistorListType visitorList;
346 };
347
348 \end{lstlisting}
349
350 \section{\label{appendixSection:concepts}Concepts}
351
352 OOPSE manipulates both traditional atoms as well as some objects
353 that {\it behave like atoms}. These objects can be rigid
354 collections of atoms or atoms which have orientational degrees of
355 freedom. A diagram of the class hierarchy is illustrated in
356 Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
357 DirectionalAtom in {\sc OOPSE} have their own names which are
358 specified in the {\tt .md} file. In contrast, RigidBodies are
359 denoted by their membership and index inside a particular molecule:
360 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
361 on the specifics of the simulation). The names of rigid bodies are
362 generated automatically. For example, the name of the first rigid
363 body in a DMPC molecule is DMPC\_RB\_0.
364 \begin{itemize}
365 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
366 integrators and minimizers.
367 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
368 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
369 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
370 DirectionalAtom}s which behaves as a single unit.
371 \end{itemize}
372
373 \section{\label{appendixSection:syntax}Syntax of the Select Command}
374
375 {\sc OOPSE} provides a powerful selection utility to select
376 StuntDoubles. The most general form of the select command is:
377
378 {\tt select {\it expression}}.
379
380 This expression represents an arbitrary set of StuntDoubles (Atoms
381 or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
382 name expressions, index expressions, predefined sets, user-defined
383 expressions, comparison operators, within expressions, or logical
384 combinations of the above expression types. Expressions can be
385 combined using parentheses and the Boolean operators.
386
387 \subsection{\label{appendixSection:logical}Logical expressions}
388
389 The logical operators allow complex queries to be constructed out of
390 simpler ones using the standard boolean connectives {\bf and}, {\bf
391 or}, {\bf not}. Parentheses can be used to alter the precedence of
392 the operators.
393
394 \begin{center}
395 \begin{tabular}{|ll|}
396 \hline
397 {\bf logical operator} & {\bf equivalent operator} \\
398 \hline
399 and & ``\&'', ``\&\&'' \\
400 or & ``$|$'', ``$||$'', ``,'' \\
401 not & ``!'' \\
402 \hline
403 \end{tabular}
404 \end{center}
405
406 \subsection{\label{appendixSection:name}Name expressions}
407
408 \begin{center}
409 \begin{tabular}{|llp{2in}|}
410 \hline {\bf type of expression} & {\bf examples} & {\bf translation
411 of
412 examples} \\
413 \hline expression without ``.'' & select DMPC & select all
414 StuntDoubles
415 belonging to all DMPC molecules \\
416 & select C* & select all atoms which have atom types beginning with C
417 \\
418 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
419 only select the rigid bodies, and not the atoms belonging to them). \\
420 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
421 O\_TIP3P
422 atoms belonging to TIP3P molecules \\
423 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
424 the first
425 RigidBody in each DMPC molecule \\
426 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
427 molecule \\
428 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
429 select all atoms
430 belonging to all rigid bodies within all DMPC molecules \\
431 \hline
432 \end{tabular}
433 \end{center}
434
435 \subsection{\label{appendixSection:index}Index expressions}
436
437 \begin{center}
438 \begin{tabular}{|lp{4in}|}
439 \hline
440 {\bf examples} & {\bf translation of examples} \\
441 \hline
442 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
443 select 20 to 30 & select all of the StuntDoubles belonging to
444 molecules which have global indices between 20 (inclusive) and 30
445 (exclusive) \\
446 \hline
447 \end{tabular}
448 \end{center}
449
450 \subsection{\label{appendixSection:predefined}Predefined sets}
451
452 \begin{center}
453 \begin{tabular}{|ll|}
454 \hline
455 {\bf keyword} & {\bf description} \\
456 \hline
457 all & select all StuntDoubles \\
458 none & select none of the StuntDoubles \\
459 \hline
460 \end{tabular}
461 \end{center}
462
463 \subsection{\label{appendixSection:userdefined}User-defined expressions}
464
465 Users can define arbitrary terms to represent groups of
466 StuntDoubles, and then use the define terms in select commands. The
467 general form for the define command is: {\bf define {\it term
468 expression}}. Once defined, the user can specify such terms in
469 boolean expressions
470
471 {\tt define SSDWATER SSD or SSD1 or SSDRF}
472
473 {\tt select SSDWATER}
474
475 \subsection{\label{appendixSection:comparison}Comparison expressions}
476
477 StuntDoubles can be selected by using comparision operators on their
478 properties. The general form for the comparison command is: a
479 property name, followed by a comparision operator and then a number.
480
481 \begin{center}
482 \begin{tabular}{|l|l|}
483 \hline
484 {\bf property} & mass, charge \\
485 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
486 ``$<=$'', ``$!=$'' \\
487 \hline
488 \end{tabular}
489 \end{center}
490
491 For example, the phrase {\tt select mass > 16.0 and charge < -2}
492 would select StuntDoubles which have mass greater than 16.0 and
493 charges less than -2.
494
495 \subsection{\label{appendixSection:within}Within expressions}
496
497 The ``within'' keyword allows the user to select all StuntDoubles
498 within the specified distance (in Angstroms) from a selection,
499 including the selected atom itself. The general form for within
500 selection is: {\tt select within(distance, expression)}
501
502 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
503 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
504 atoms.
505
506
507 \section{\label{appendixSection:analysisFramework}Analysis Framework}
508
509 \subsection{\label{appendixSection:StaticProps}StaticProps}
510
511 {\tt StaticProps} can compute properties which are averaged over
512 some or all of the configurations that are contained within a dump
513 file. The most common example of a static property that can be
514 computed is the pair distribution function between atoms of type $A$
515 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
516 also be used to compute the density distributions of other molecules
517 in a reference frame {\it fixed to the body-fixed reference frame}
518 of a selected atom or rigid body.
519
520 There are five seperate radial distribution functions availiable in
521 OOPSE. Since every radial distrbution function invlove the
522 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
523 -{}-sele2} must be specified to tell StaticProps which bodies to
524 include in the calculation.
525
526 \begin{description}
527 \item[{\tt -{}-gofr}] Computes the pair distribution function,
528 \begin{equation*}
529 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
530 \sum_{j \in B} \delta(r - r_{ij}) \rangle
531 \end{equation*}
532 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
533 function. The angle is defined by the intermolecular vector
534 $\vec{r}$ and $z$-axis of DirectionalAtom A,
535 \begin{equation*}
536 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
537 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
538 \theta_{ij} - \cos \theta)\rangle
539 \end{equation*}
540 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
541 function. The angle is defined by the $z$-axes of the two
542 DirectionalAtoms A and B.
543 \begin{equation*}
544 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
545 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
546 \omega_{ij} - \cos \omega)\rangle
547 \end{equation*}
548 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
549 space $\theta, \omega$ defined by the two angles mentioned above.
550 \begin{equation*}
551 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
552 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
553 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
554 \omega)\rangle
555 \end{equation*}
556 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
557 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
558 and {\tt -{}-refsele} must be given to define A's internal
559 coordinate set as the reference frame for the calculation.
560 \end{description}
561
562 The vectors (and angles) associated with these angular pair
563 distribution functions are most easily seen in the figure below:
564
565 \begin{figure}
566 \centering
567 \includegraphics[width=3in]{definition.eps}
568 \caption[Definitions of the angles between directional objects]{ \\
569 Any two directional objects (DirectionalAtoms and RigidBodies) have
570 a set of two angles ($\theta$, and $\omega$) between the z-axes of
571 their body-fixed frames.} \label{oopseFig:gofr}
572 \end{figure}
573
574 Due to the fact that the selected StuntDoubles from two selections
575 may be overlapped, {\tt StaticProps} performs the calculation in
576 three stages which are illustrated in
577 Fig.~\ref{oopseFig:staticPropsProcess}.
578
579 \begin{figure}
580 \centering
581 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
582 \caption[A representation of the three-stage correlations in
583 \texttt{StaticProps}]{This diagram illustrates three-stage
584 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
585 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
586 -{}-sele2} respectively, while $C$ is the number of stuntdobules
587 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
588 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
589 the contrary, the third stage($C$ and $C$) are completely
590 overlapping} \label{oopseFig:staticPropsProcess}
591 \end{figure}
592
593 The options available for {\tt StaticProps} are as follows:
594 \begin{longtable}[c]{|EFG|}
595 \caption{StaticProps Command-line Options}
596 \\ \hline
597 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
598 \endhead
599 \hline
600 \endfoot
601 -h& {\tt -{}-help} & Print help and exit \\
602 -V& {\tt -{}-version} & Print version and exit \\
603 -i& {\tt -{}-input} & input dump file \\
604 -o& {\tt -{}-output} & output file name \\
605 -n& {\tt -{}-step} & process every n frame (default=`1') \\
606 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
607 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
608 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
609 & {\tt -{}-sele1} & select the first StuntDouble set \\
610 & {\tt -{}-sele2} & select the second StuntDouble set \\
611 & {\tt -{}-sele3} & select the third StuntDouble set \\
612 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
613 & {\tt -{}-molname} & molecule name \\
614 & {\tt -{}-begin} & begin internal index \\
615 & {\tt -{}-end} & end internal index \\
616 \hline
617 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
618 \hline
619 & {\tt -{}-gofr} & $g(r)$ \\
620 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
621 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
622 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
623 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
624 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
625 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
626 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
627 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
628 \end{longtable}
629
630 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
631
632 {\tt DynamicProps} computes time correlation functions from the
633 configurations stored in a dump file. Typical examples of time
634 correlation functions are the mean square displacement and the
635 velocity autocorrelation functions. Once again, the selection
636 syntax can be used to specify the StuntDoubles that will be used for
637 the calculation. A general time correlation function can be thought
638 of as:
639 \begin{equation}
640 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
641 \end{equation}
642 where $\vec{u}_A(t)$ is a vector property associated with an atom of
643 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
644 vector property associated with an atom of type $B$ at a different
645 time $t^{\prime}$. In most autocorrelation functions, the vector
646 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
647 $B$) are identical, and the three calculations built in to {\tt
648 DynamicProps} make these assumptions. It is possible, however, to
649 make simple modifications to the {\tt DynamicProps} code to allow
650 the use of {\it cross} time correlation functions (i.e. with
651 different vectors). The ability to use two selection scripts to
652 select different types of atoms is already present in the code.
653
654 For large simulations, the trajectory files can sometimes reach
655 sizes in excess of several gigabytes. In order to effectively
656 analyze that amount of data. In order to prevent a situation where
657 the program runs out of memory due to large trajectories,
658 \texttt{dynamicProps} will estimate the size of free memory at
659 first, and determine the number of frames in each block, which
660 allows the operating system to load two blocks of data
661 simultaneously without swapping. Upon reading two blocks of the
662 trajectory, \texttt{dynamicProps} will calculate the time
663 correlation within the first block and the cross correlations
664 between the two blocks. This second block is then freed and then
665 incremented and the process repeated until the end of the
666 trajectory. Once the end is reached, the first block is freed then
667 incremented, until all frame pairs have been correlated in time.
668 This process is illustrated in
669 Fig.~\ref{oopseFig:dynamicPropsProcess}.
670
671 \begin{figure}
672 \centering
673 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
674 \caption[A representation of the block correlations in
675 \texttt{dynamicProps}]{This diagram illustrates block correlations
676 processing in \texttt{dynamicProps}. The shaded region represents
677 the self correlation of the block, and the open blocks are read one
678 at a time and the cross correlations between blocks are calculated.}
679 \label{oopseFig:dynamicPropsProcess}
680 \end{figure}
681
682 The options available for DynamicProps are as follows:
683 \begin{longtable}[c]{|EFG|}
684 \caption{DynamicProps Command-line Options}
685 \\ \hline
686 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
687 \endhead
688 \hline
689 \endfoot
690 -h& {\tt -{}-help} & Print help and exit \\
691 -V& {\tt -{}-version} & Print version and exit \\
692 -i& {\tt -{}-input} & input dump file \\
693 -o& {\tt -{}-output} & output file name \\
694 & {\tt -{}-sele1} & select first StuntDouble set \\
695 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
696 \hline
697 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
698 \hline
699 -r& {\tt -{}-rcorr} & compute mean square displacement \\
700 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
701 -d& {\tt -{}-dcorr} & compute dipole correlation function
702 \end{longtable}
703
704 \section{\label{appendixSection:tools}Other Useful Utilities}
705
706 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
707
708 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
709 which can be opened by other molecular dynamics viewers such as Jmol
710 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
711 as follows:
712
713
714 \begin{longtable}[c]{|EFG|}
715 \caption{Dump2XYZ Command-line Options}
716 \\ \hline
717 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
718 \endhead
719 \hline
720 \endfoot
721 -h & {\tt -{}-help} & Print help and exit \\
722 -V & {\tt -{}-version} & Print version and exit \\
723 -i & {\tt -{}-input} & input dump file \\
724 -o & {\tt -{}-output} & output file name \\
725 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
726 -w & {\tt -{}-water} & skip the the waters (default=off) \\
727 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
728 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
729 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
730 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
731 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
732 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
733 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
734 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
735 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
736 converted. \\
737 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
738 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
739 \end{longtable}
740
741 \subsection{\label{appendixSection:hydrodynamics}Hydro}
742
743 {\tt Hydro} can calculate resistance and diffusion tensors at the
744 center of resistance. Both tensors at the center of diffusion can
745 also be reported from the program, as well as the coordinates for
746 the beads which are used to approximate the arbitrary shapes. The
747 options available for Hydro are as follows:
748 \begin{longtable}[c]{|EFG|}
749 \caption{Hydrodynamics Command-line Options}
750 \\ \hline
751 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
752 \endhead
753 \hline
754 \endfoot
755 -h & {\tt -{}-help} & Print help and exit \\
756 -V & {\tt -{}-version} & Print version and exit \\
757 -i & {\tt -{}-input} & input dump file \\
758 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
759 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
760 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
761 \end{longtable}