ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2842
Committed: Fri Jun 9 04:07:13 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 31841 byte(s)
Log Message:
more reference fixes

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Absence of applying modern software development practices is the
5 bottleneck of Scientific Computing community\cite{Wilson2006}. In
6 the last 20 years , there are quite a few MD
7 packages\cite{Brooks1983, Vincent1995, Kale1999} that were developed
8 to solve common MD problems and perform robust simulations .
9 Unfortunately, most of them are commercial programs that are either
10 poorly written or extremely complicate. Consequently, it prevents
11 the researchers to reuse or extend those packages to do cutting-edge
12 research effectively. Along the way of studying structural and
13 dynamic processes in condensed phase systems like biological
14 membranes and nanoparticles, we developed an open source
15 Object-Oriented Parallel Simulation Engine ({\sc OOPSE}). This new
16 molecular dynamics package has some unique features
17 \begin{enumerate}
18 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
19 atom types (transition metals, point dipoles, sticky potentials,
20 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
21 degrees of freedom), as well as rigid bodies.
22 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
23 Beowulf clusters to obtain very efficient parallelism.
24 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
25 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
26 ensembles.
27 \item {\sc OOPSE} can carry out simulations on metallic systems using the
28 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
29 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
30 \item {\sc OOPSE} can simulate systems containing the extremely efficient
31 extended-Soft Sticky Dipole (SSD/E) model for water.
32 \end{enumerate}
33
34 \section{\label{appendixSection:architecture }Architecture}
35
36 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
37 uses C++ Standard Template Library (STL) and fortran modules as the
38 foundation. As an extensive set of the STL and Fortran90 modules,
39 {\sc Base Classes} provide generic implementations of mathematical
40 objects (e.g., matrices, vectors, polynomials, random number
41 generators) and advanced data structures and algorithms(e.g., tuple,
42 bitset, generic data, string manipulation). The molecular data
43 structures for the representation of atoms, bonds, bends, torsions,
44 rigid bodies and molecules \textit{etc} are contained in the {\sc
45 Kernel} which is implemented with {\sc Base Classes} and are
46 carefully designed to provide maximum extensibility and flexibility.
47 The functionality required for applications is provide by the third
48 layer which contains Input/Output, Molecular Mechanics and Structure
49 modules. Input/Output module not only implements general methods for
50 file handling, but also defines a generic force field interface.
51 Another important component of Input/Output module is the meta-data
52 file parser, which is rewritten using ANother Tool for Language
53 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
54 Mechanics module consists of energy minimization and a wide
55 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
56 The structure module contains a flexible and powerful selection
57 library which syntax is elaborated in
58 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
59 program of the package, \texttt{oopse} and it corresponding parallel
60 version \texttt{oopse\_MPI}, as well as other useful utilities, such
61 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
62 \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
63 \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
64 \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
65 \textit{etc}.
66
67 \begin{figure}
68 \centering
69 \includegraphics[width=\linewidth]{architecture.eps}
70 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
71 of {\sc OOPSE}} \label{appendixFig:architecture}
72 \end{figure}
73
74 \section{\label{appendixSection:desginPattern}Design Pattern}
75
76 Design patterns are optimal solutions to commonly-occurring problems
77 in software design. Although originated as an architectural concept
78 for buildings and towns by Christopher Alexander
79 \cite{Alexander1987}, software patterns first became popular with
80 the wide acceptance of the book, Design Patterns: Elements of
81 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
82 the experience, knowledge and insights of developers who have
83 successfully used these patterns in their own work. Patterns are
84 reusable. They provide a ready-made solution that can be adapted to
85 different problems as necessary. Pattern are expressive. they
86 provide a common vocabulary of solutions that can express large
87 solutions succinctly. As one of the latest advanced techniques
88 emerged from object-oriented community, design patterns were applied
89 in some of the modern scientific software applications, such as
90 JMol, {\sc OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2004}
91 \textit{etc}. The following sections enumerates some of the patterns
92 used in {\sc OOPSE}.
93
94 \subsection{\label{appendixSection:singleton}Singleton}
95
96 The Singleton pattern not only provides a mechanism to restrict
97 instantiation of a class to one object, but also provides a global
98 point of access to the object. Currently implemented as a global
99 variable, the logging utility which reports error and warning
100 messages to the console in {\sc OOPSE} is a good candidate for
101 applying the Singleton pattern to avoid the global namespace
102 pollution. Although the singleton pattern can be implemented in
103 various ways to account for different aspects of the software
104 designs, such as lifespan control \textit{etc}, we only use the
105 static data approach in {\sc OOPSE}. The declaration and
106 implementation of IntegratorFactory class are given by declared in
107 List.~\ref{appendixScheme:singletonDeclaration} and
108 List.~\ref{appendixScheme:singletonImplementation} respectively.
109 Since constructor is declared as protected, a client can not
110 instantiate IntegratorFactory directly. Moreover, since the member
111 function getInstance serves as the only entry of access to
112 IntegratorFactory, this approach fulfills the basic requirement, a
113 single instance. Another consequence of this approach is the
114 automatic destruction since static data are destroyed upon program
115 termination.
116 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
117
118 class IntegratorFactory {
119 public:
120 static IntegratorFactory*
121 getInstance();
122 protected:
123 IntegratorFactory();
124 private:
125 static IntegratorFactory* instance_;
126 };
127
128 \end{lstlisting}
129
130 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
131
132 IntegratorFactory::instance_ = NULL;
133
134 IntegratorFactory* getInstance() {
135 if (instance_ == NULL){
136 instance_ = new IntegratorFactory;
137 }
138 return instance_;
139 }
140
141 \end{lstlisting}
142
143
144 \subsection{\label{appendixSection:factoryMethod}Factory Method}
145
146 Categoried as a creational pattern, the Factory Method pattern deals
147 with the problem of creating objects without specifying the exact
148 class of object that will be created. Factory Method is typically
149 implemented by delegating the creation operation to the subclasses.
150 Parameterized Factory pattern where factory method (
151 createIntegrator member function) creates products based on the
152 identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
153 the identifier has been already registered, the factory method will
154 invoke the corresponding creator (see
155 List.~\ref{appendixScheme:integratorCreator}) which utilizes the
156 modern C++ template technique to avoid excess subclassing.
157
158 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
159
160 class IntegratorFactory {
161 public:
162 typedef std::map<string, IntegratorCreator*> CreatorMapType;
163
164 bool registerIntegrator(IntegratorCreator* creator) {
165 return creatorMap_.insert(creator->getIdent(), creator).second;
166 }
167
168 Integrator* createIntegrator(const string& id, SimInfo* info) {
169 Integrator* result = NULL;
170 CreatorMapType::iterator i = creatorMap_.find(id);
171 if (i != creatorMap_.end()) {
172 result = (i->second)->create(info);
173 }
174 return result;
175 }
176
177 private:
178 CreatorMapType creatorMap_;
179 };
180 \end{lstlisting}
181
182 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
183
184 class IntegratorCreator {
185 public:
186 IntegratorCreator(const string& ident) : ident_(ident) {}
187
188 const string& getIdent() const { return ident_; }
189
190 virtual Integrator* create(SimInfo* info) const = 0;
191
192 private:
193 string ident_;
194 };
195
196 template<class ConcreteIntegrator>
197 class IntegratorBuilder : public IntegratorCreator {
198 public:
199 IntegratorBuilder(const string& ident)
200 : IntegratorCreator(ident) {}
201 virtual Integrator* create(SimInfo* info) const {
202 return new ConcreteIntegrator(info);
203 }
204 };
205 \end{lstlisting}
206
207 \subsection{\label{appendixSection:visitorPattern}Visitor}
208
209 The visitor pattern is designed to decouple the data structure and
210 algorithms used upon them by collecting related operation from
211 element classes into other visitor classes, which is equivalent to
212 adding virtual functions into a set of classes without modifying
213 their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
214 structure of Visitor pattern which is used extensively in {\tt
215 Dump2XYZ}. In order to convert an OOPSE dump file, a series of
216 distinct operations are performed on different StuntDoubles (See the
217 class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
218 in List.~\ref{appendixScheme:element}). Since the hierarchies
219 remains stable, it is easy to define a visit operation (see
220 List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
221 Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
222 manages a priority visitor list and handles the execution of every
223 visitor in the priority list on different StuntDoubles.
224
225 \begin{figure}
226 \centering
227 \includegraphics[width=\linewidth]{visitor.eps}
228 \caption[The UML class diagram of Visitor patten] {The UML class
229 diagram of Visitor patten.} \label{appendixFig:visitorUML}
230 \end{figure}
231
232 \begin{figure}
233 \centering
234 \includegraphics[width=\linewidth]{hierarchy.eps}
235 \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
236 the class hierarchy. } \label{oopseFig:hierarchy}
237 \end{figure}
238
239 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
240
241 class StuntDouble { public:
242 virtual void accept(BaseVisitor* v) = 0;
243 };
244
245 class Atom: public StuntDouble { public:
246 virtual void accept{BaseVisitor* v*} {
247 v->visit(this);
248 }
249 };
250
251 class DirectionalAtom: public Atom { public:
252 virtual void accept{BaseVisitor* v*} {
253 v->visit(this);
254 }
255 };
256
257 class RigidBody: public StuntDouble { public:
258 virtual void accept{BaseVisitor* v*} {
259 v->visit(this);
260 }
261 };
262
263 \end{lstlisting}
264
265 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
266
267 class BaseVisitor{
268 public:
269 virtual void visit(Atom* atom);
270 virtual void visit(DirectionalAtom* datom);
271 virtual void visit(RigidBody* rb);
272 };
273
274 class BaseAtomVisitor:public BaseVisitor{ public:
275 virtual void visit(Atom* atom);
276 virtual void visit(DirectionalAtom* datom);
277 virtual void visit(RigidBody* rb);
278 };
279
280 class SSDAtomVisitor:public BaseAtomVisitor{ public:
281 virtual void visit(Atom* atom);
282 virtual void visit(DirectionalAtom* datom);
283 virtual void visit(RigidBody* rb);
284 };
285
286 class CompositeVisitor: public BaseVisitor {
287 public:
288
289 typedef list<pair<BaseVisitor*, int> > VistorListType;
290 typedef VistorListType::iterator VisitorListIterator;
291 virtual void visit(Atom* atom) {
292 VisitorListIterator i;
293 BaseVisitor* curVisitor;
294 for(i = visitorList.begin();i != visitorList.end();++i) {
295 atom->accept(*i);
296 }
297 }
298
299 virtual void visit(DirectionalAtom* datom) {
300 VisitorListIterator i;
301 BaseVisitor* curVisitor;
302 for(i = visitorList.begin();i != visitorList.end();++i) {
303 atom->accept(*i);
304 }
305 }
306
307 virtual void visit(RigidBody* rb) {
308 VisitorListIterator i;
309 std::vector<Atom*> myAtoms;
310 std::vector<Atom*>::iterator ai;
311 myAtoms = rb->getAtoms();
312 for(i = visitorList.begin();i != visitorList.end();++i) {{
313 rb->accept(*i);
314 for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
315 (*ai)->accept(*i);
316 }
317 }
318
319 void addVisitor(BaseVisitor* v, int priority);
320
321 protected:
322 VistorListType visitorList;
323 };
324
325 \end{lstlisting}
326
327 \section{\label{appendixSection:concepts}Concepts}
328
329 OOPSE manipulates both traditional atoms as well as some objects
330 that {\it behave like atoms}. These objects can be rigid
331 collections of atoms or atoms which have orientational degrees of
332 freedom. A diagram of the class hierarchy is illustrated in
333 Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
334 DirectionalAtom in {\sc OOPSE} have their own names which are
335 specified in the {\tt .md} file. In contrast, RigidBodies are
336 denoted by their membership and index inside a particular molecule:
337 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
338 on the specifics of the simulation). The names of rigid bodies are
339 generated automatically. For example, the name of the first rigid
340 body in a DMPC molecule is DMPC\_RB\_0.
341 \begin{itemize}
342 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
343 integrators and minimizers.
344 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
345 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
346 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
347 DirectionalAtom}s which behaves as a single unit.
348 \end{itemize}
349
350 \section{\label{appendixSection:syntax}Syntax of the Select Command}
351
352 {\sc OOPSE} provides a powerful selection utility to select
353 StuntDoubles. The most general form of the select command is:
354
355 {\tt select {\it expression}}.
356
357 This expression represents an arbitrary set of StuntDoubles (Atoms
358 or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
359 name expressions, index expressions, predefined sets, user-defined
360 expressions, comparison operators, within expressions, or logical
361 combinations of the above expression types. Expressions can be
362 combined using parentheses and the Boolean operators.
363
364 \subsection{\label{appendixSection:logical}Logical expressions}
365
366 The logical operators allow complex queries to be constructed out of
367 simpler ones using the standard boolean connectives {\bf and}, {\bf
368 or}, {\bf not}. Parentheses can be used to alter the precedence of
369 the operators.
370
371 \begin{center}
372 \begin{tabular}{|ll|}
373 \hline
374 {\bf logical operator} & {\bf equivalent operator} \\
375 \hline
376 and & ``\&'', ``\&\&'' \\
377 or & ``$|$'', ``$||$'', ``,'' \\
378 not & ``!'' \\
379 \hline
380 \end{tabular}
381 \end{center}
382
383 \subsection{\label{appendixSection:name}Name expressions}
384
385 \begin{center}
386 \begin{tabular}{|llp{2in}|}
387 \hline {\bf type of expression} & {\bf examples} & {\bf translation
388 of
389 examples} \\
390 \hline expression without ``.'' & select DMPC & select all
391 StuntDoubles
392 belonging to all DMPC molecules \\
393 & select C* & select all atoms which have atom types beginning with C
394 \\
395 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
396 only select the rigid bodies, and not the atoms belonging to them). \\
397 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
398 O\_TIP3P
399 atoms belonging to TIP3P molecules \\
400 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
401 the first
402 RigidBody in each DMPC molecule \\
403 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
404 molecule \\
405 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
406 select all atoms
407 belonging to all rigid bodies within all DMPC molecules \\
408 \hline
409 \end{tabular}
410 \end{center}
411
412 \subsection{\label{appendixSection:index}Index expressions}
413
414 \begin{center}
415 \begin{tabular}{|lp{4in}|}
416 \hline
417 {\bf examples} & {\bf translation of examples} \\
418 \hline
419 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
420 select 20 to 30 & select all of the StuntDoubles belonging to
421 molecules which have global indices between 20 (inclusive) and 30
422 (exclusive) \\
423 \hline
424 \end{tabular}
425 \end{center}
426
427 \subsection{\label{appendixSection:predefined}Predefined sets}
428
429 \begin{center}
430 \begin{tabular}{|ll|}
431 \hline
432 {\bf keyword} & {\bf description} \\
433 \hline
434 all & select all StuntDoubles \\
435 none & select none of the StuntDoubles \\
436 \hline
437 \end{tabular}
438 \end{center}
439
440 \subsection{\label{appendixSection:userdefined}User-defined expressions}
441
442 Users can define arbitrary terms to represent groups of
443 StuntDoubles, and then use the define terms in select commands. The
444 general form for the define command is: {\bf define {\it term
445 expression}}. Once defined, the user can specify such terms in
446 boolean expressions
447
448 {\tt define SSDWATER SSD or SSD1 or SSDRF}
449
450 {\tt select SSDWATER}
451
452 \subsection{\label{appendixSection:comparison}Comparison expressions}
453
454 StuntDoubles can be selected by using comparision operators on their
455 properties. The general form for the comparison command is: a
456 property name, followed by a comparision operator and then a number.
457
458 \begin{center}
459 \begin{tabular}{|l|l|}
460 \hline
461 {\bf property} & mass, charge \\
462 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
463 ``$<=$'', ``$!=$'' \\
464 \hline
465 \end{tabular}
466 \end{center}
467
468 For example, the phrase {\tt select mass > 16.0 and charge < -2}
469 would select StuntDoubles which have mass greater than 16.0 and
470 charges less than -2.
471
472 \subsection{\label{appendixSection:within}Within expressions}
473
474 The ``within'' keyword allows the user to select all StuntDoubles
475 within the specified distance (in Angstroms) from a selection,
476 including the selected atom itself. The general form for within
477 selection is: {\tt select within(distance, expression)}
478
479 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
480 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
481 atoms.
482
483
484 \section{\label{appendixSection:analysisFramework}Analysis Framework}
485
486 \subsection{\label{appendixSection:StaticProps}StaticProps}
487
488 {\tt StaticProps} can compute properties which are averaged over
489 some or all of the configurations that are contained within a dump
490 file. The most common example of a static property that can be
491 computed is the pair distribution function between atoms of type $A$
492 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
493 also be used to compute the density distributions of other molecules
494 in a reference frame {\it fixed to the body-fixed reference frame}
495 of a selected atom or rigid body. Due to the fact that the selected
496 StuntDoubles from two selections may be overlapped, {\tt
497 StaticProps} performs the calculation in three stages which are
498 illustrated in Fig.~\ref{oopseFig:staticPropsProcess}.
499
500 \begin{figure}
501 \centering
502 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
503 \caption[A representation of the three-stage correlations in
504 \texttt{StaticProps}]{This diagram illustrates three-stage
505 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
506 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
507 -{}-sele2} respectively, while $C$ is the number of stuntdobules
508 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
509 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
510 the contrary, the third stage($C$ and $C$) are completely
511 overlapping} \label{oopseFig:staticPropsProcess}
512 \end{figure}
513
514 There are five seperate radial distribution functions availiable in
515 OOPSE. Since every radial distrbution function invlove the
516 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
517 -{}-sele2} must be specified to tell StaticProps which bodies to
518 include in the calculation.
519
520 \begin{description}
521 \item[{\tt -{}-gofr}] Computes the pair distribution function,
522 \begin{equation*}
523 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
524 \sum_{j \in B} \delta(r - r_{ij}) \rangle
525 \end{equation*}
526 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
527 function. The angle is defined by the intermolecular vector
528 $\vec{r}$ and $z$-axis of DirectionalAtom A,
529 \begin{equation*}
530 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
531 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
532 \theta_{ij} - \cos \theta)\rangle
533 \end{equation*}
534 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
535 function. The angle is defined by the $z$-axes of the two
536 DirectionalAtoms A and B.
537 \begin{equation*}
538 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
539 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
540 \omega_{ij} - \cos \omega)\rangle
541 \end{equation*}
542 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
543 space $\theta, \omega$ defined by the two angles mentioned above.
544 \begin{equation*}
545 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
546 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
547 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
548 \omega)\rangle
549 \end{equation*}
550 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
551 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
552 and {\tt -{}-refsele} must be given to define A's internal
553 coordinate set as the reference frame for the calculation.
554 \end{description}
555
556 The vectors (and angles) associated with these angular pair
557 distribution functions are most easily seen in
558 Fig.~\ref{oopseFig:gofr}
559
560 \begin{figure}
561 \centering
562 \includegraphics[width=3in]{definition.eps}
563 \caption[Definitions of the angles between directional objects]{ \\
564 Any two directional objects (DirectionalAtoms and RigidBodies) have
565 a set of two angles ($\theta$, and $\omega$) between the z-axes of
566 their body-fixed frames.} \label{oopseFig:gofr}
567 \end{figure}
568
569 The options available for {\tt StaticProps} are as follows:
570 \begin{longtable}[c]{|EFG|}
571 \caption{StaticProps Command-line Options}
572 \\ \hline
573 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
574 \endhead
575 \hline
576 \endfoot
577 -h& {\tt -{}-help} & Print help and exit \\
578 -V& {\tt -{}-version} & Print version and exit \\
579 -i& {\tt -{}-input} & input dump file \\
580 -o& {\tt -{}-output} & output file name \\
581 -n& {\tt -{}-step} & process every n frame (default=`1') \\
582 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
583 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
584 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
585 & {\tt -{}-sele1} & select the first StuntDouble set \\
586 & {\tt -{}-sele2} & select the second StuntDouble set \\
587 & {\tt -{}-sele3} & select the third StuntDouble set \\
588 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
589 & {\tt -{}-molname} & molecule name \\
590 & {\tt -{}-begin} & begin internal index \\
591 & {\tt -{}-end} & end internal index \\
592 \hline
593 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
594 \hline
595 & {\tt -{}-gofr} & $g(r)$ \\
596 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
597 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
598 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
599 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
600 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
601 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
602 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
603 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
604 \end{longtable}
605
606 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
607
608 {\tt DynamicProps} computes time correlation functions from the
609 configurations stored in a dump file. Typical examples of time
610 correlation functions are the mean square displacement and the
611 velocity autocorrelation functions. Once again, the selection
612 syntax can be used to specify the StuntDoubles that will be used for
613 the calculation. A general time correlation function can be thought
614 of as:
615 \begin{equation}
616 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
617 \end{equation}
618 where $\vec{u}_A(t)$ is a vector property associated with an atom of
619 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
620 vector property associated with an atom of type $B$ at a different
621 time $t^{\prime}$. In most autocorrelation functions, the vector
622 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
623 $B$) are identical, and the three calculations built in to {\tt
624 DynamicProps} make these assumptions. It is possible, however, to
625 make simple modifications to the {\tt DynamicProps} code to allow
626 the use of {\it cross} time correlation functions (i.e. with
627 different vectors). The ability to use two selection scripts to
628 select different types of atoms is already present in the code.
629
630 For large simulations, the trajectory files can sometimes reach
631 sizes in excess of several gigabytes. In order to prevent a
632 situation where the program runs out of memory due to large
633 trajectories, \texttt{dynamicProps} will estimate the size of free
634 memory at first, and determine the number of frames in each block,
635 which allows the operating system to load two blocks of data
636 simultaneously without swapping. Upon reading two blocks of the
637 trajectory, \texttt{dynamicProps} will calculate the time
638 correlation within the first block and the cross correlations
639 between the two blocks. This second block is then freed and then
640 incremented and the process repeated until the end of the
641 trajectory. Once the end is reached, the first block is freed then
642 incremented, until all frame pairs have been correlated in time.
643 This process is illustrated in
644 Fig.~\ref{oopseFig:dynamicPropsProcess}.
645
646 \begin{figure}
647 \centering
648 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
649 \caption[A representation of the block correlations in
650 \texttt{dynamicProps}]{This diagram illustrates block correlations
651 processing in \texttt{dynamicProps}. The shaded region represents
652 the self correlation of the block, and the open blocks are read one
653 at a time and the cross correlations between blocks are calculated.}
654 \label{oopseFig:dynamicPropsProcess}
655 \end{figure}
656
657 The options available for DynamicProps are as follows:
658 \begin{longtable}[c]{|EFG|}
659 \caption{DynamicProps Command-line Options}
660 \\ \hline
661 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
662 \endhead
663 \hline
664 \endfoot
665 -h& {\tt -{}-help} & Print help and exit \\
666 -V& {\tt -{}-version} & Print version and exit \\
667 -i& {\tt -{}-input} & input dump file \\
668 -o& {\tt -{}-output} & output file name \\
669 & {\tt -{}-sele1} & select first StuntDouble set \\
670 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
671 \hline
672 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
673 \hline
674 -r& {\tt -{}-rcorr} & compute mean square displacement \\
675 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
676 -d& {\tt -{}-dcorr} & compute dipole correlation function
677 \end{longtable}
678
679 \section{\label{appendixSection:tools}Other Useful Utilities}
680
681 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
682
683 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
684 which can be opened by other molecular dynamics viewers such as Jmol
685 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
686 as follows:
687
688
689 \begin{longtable}[c]{|EFG|}
690 \caption{Dump2XYZ Command-line Options}
691 \\ \hline
692 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
693 \endhead
694 \hline
695 \endfoot
696 -h & {\tt -{}-help} & Print help and exit \\
697 -V & {\tt -{}-version} & Print version and exit \\
698 -i & {\tt -{}-input} & input dump file \\
699 -o & {\tt -{}-output} & output file name \\
700 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
701 -w & {\tt -{}-water} & skip the the waters (default=off) \\
702 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
703 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
704 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
705 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
706 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
707 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
708 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
709 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
710 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
711 converted. \\
712 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
713 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
714 \end{longtable}
715
716 \subsection{\label{appendixSection:hydrodynamics}Hydro}
717
718 {\tt Hydro} can calculate resistance and diffusion tensors at the
719 center of resistance. Both tensors at the center of diffusion can
720 also be reported from the program, as well as the coordinates for
721 the beads which are used to approximate the arbitrary shapes. The
722 options available for Hydro are as follows:
723 \begin{longtable}[c]{|EFG|}
724 \caption{Hydrodynamics Command-line Options}
725 \\ \hline
726 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
727 \endhead
728 \hline
729 \endfoot
730 -h & {\tt -{}-help} & Print help and exit \\
731 -V & {\tt -{}-version} & Print version and exit \\
732 -i & {\tt -{}-input} & input dump file \\
733 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
734 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
735 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
736 \end{longtable}