ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
Revision: 2880
Committed: Thu Jun 22 22:19:02 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 31688 byte(s)
Log Message:
finish conclusion; some format checking correction

File Contents

# Content
1 \appendix
2 \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3
4 Absence of applying modern software development practices is the
5 bottleneck of Scientific Computing community\cite{Wilson2006}. In
6 the last 20 years , there are quite a few MD
7 packages\cite{Brooks1983, Vincent1995, Kale1999} that were developed
8 to solve common MD problems and perform robust simulations .
9 Unfortunately, most of them are commercial programs that are either
10 poorly written or extremely complicate. Consequently, it prevents
11 the researchers to reuse or extend those packages to do cutting-edge
12 research effectively. Along the way of studying structural and
13 dynamic processes in condensed phase systems like biological
14 membranes and nanoparticles, we developed an open source
15 Object-Oriented Parallel Simulation Engine ({\sc OOPSE}). This new
16 molecular dynamics package has some unique features
17 \begin{enumerate}
18 \item {\sc OOPSE} performs Molecular Dynamics (MD) simulations on non-standard
19 atom types (transition metals, point dipoles, sticky potentials,
20 Gay-Berne ellipsoids, or other "lumpy"atoms with orientational
21 degrees of freedom), as well as rigid bodies.
22 \item {\sc OOPSE} uses a force-based decomposition algorithm using MPI on cheap
23 Beowulf clusters to obtain very efficient parallelism.
24 \item {\sc OOPSE} integrates the equations of motion using advanced methods for
25 orientational dynamics in NVE, NVT, NPT, NPAT, and NP$\gamma$T
26 ensembles.
27 \item {\sc OOPSE} can carry out simulations on metallic systems using the
28 Embedded Atom Method (EAM) as well as the Sutton-Chen potential.
29 \item {\sc OOPSE} can perform simulations on Gay-Berne liquid crystals.
30 \item {\sc OOPSE} can simulate systems containing the extremely efficient
31 extended-Soft Sticky Dipole (SSD/E) model for water.
32 \end{enumerate}
33
34 \section{\label{appendixSection:architecture }Architecture}
35
36 Mainly written by \texttt{C/C++} and \texttt{Fortran90}, {\sc OOPSE}
37 uses C++ Standard Template Library (STL) and fortran modules as the
38 foundation. As an extensive set of the STL and Fortran90 modules,
39 {\sc Base Classes} provide generic implementations of mathematical
40 objects (e.g., matrices, vectors, polynomials, random number
41 generators) and advanced data structures and algorithms(e.g., tuple,
42 bitset, generic data, string manipulation). The molecular data
43 structures for the representation of atoms, bonds, bends, torsions,
44 rigid bodies and molecules \textit{etc} are contained in the {\sc
45 Kernel} which is implemented with {\sc Base Classes} and are
46 carefully designed to provide maximum extensibility and flexibility.
47 The functionality required for applications is provide by the third
48 layer which contains Input/Output, Molecular Mechanics and Structure
49 modules. Input/Output module not only implements general methods for
50 file handling, but also defines a generic force field interface.
51 Another important component of Input/Output module is the meta-data
52 file parser, which is rewritten using ANother Tool for Language
53 Recognition(ANTLR)\cite{Parr1995, Schaps1999} syntax. The Molecular
54 Mechanics module consists of energy minimization and a wide
55 varieties of integration methods(see Chap.~\ref{chapt:methodology}).
56 The structure module contains a flexible and powerful selection
57 library which syntax is elaborated in
58 Sec.~\ref{appendixSection:syntax}. The top layer is made of the main
59 program of the package, \texttt{oopse} and it corresponding parallel
60 version \texttt{oopse\_MPI}, as well as other useful utilities, such
61 as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
62 \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
63 \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
64 \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
65 \textit{etc}.
66
67 \begin{figure}
68 \centering
69 \includegraphics[width=\linewidth]{architecture.eps}
70 \caption[The architecture of {\sc OOPSE}] {Overview of the structure
71 of {\sc OOPSE}} \label{appendixFig:architecture}
72 \end{figure}
73
74 \section{\label{appendixSection:desginPattern}Design Pattern}
75
76 Design patterns are optimal solutions to commonly-occurring problems
77 in software design. Although originated as an architectural concept
78 for buildings and towns by Christopher Alexander
79 \cite{Alexander1987}, software patterns first became popular with
80 the wide acceptance of the book, Design Patterns: Elements of
81 Reusable Object-Oriented Software \cite{Gamma1994}. Patterns reflect
82 the experience, knowledge and insights of developers who have
83 successfully used these patterns in their own work. Patterns are
84 reusable. They provide a ready-made solution that can be adapted to
85 different problems as necessary. Pattern are expressive. they
86 provide a common vocabulary of solutions that can express large
87 solutions succinctly. As one of the latest advanced techniques
88 emerged from object-oriented community, design patterns were applied
89 in some of the modern scientific software applications, such as
90 JMol, {\sc OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2004}
91 \textit{etc}. The following sections enumerates some of the patterns
92 used in {\sc OOPSE}.
93
94 \subsection{\label{appendixSection:singleton}Singleton}
95
96 The Singleton pattern not only provides a mechanism to restrict
97 instantiation of a class to one object, but also provides a global
98 point of access to the object. Currently implemented as a global
99 variable, the logging utility which reports error and warning
100 messages to the console in {\sc OOPSE} is a good candidate for
101 applying the Singleton pattern to avoid the global namespace
102 pollution. Although the singleton pattern can be implemented in
103 various ways to account for different aspects of the software
104 designs, such as lifespan control \textit{etc}, we only use the
105 static data approach in {\sc OOPSE}. The declaration and
106 implementation of IntegratorFactory class are given by declared in
107 List.~\ref{appendixScheme:singletonDeclaration} and
108 Scheme.~\ref{appendixScheme:singletonImplementation} respectively.
109 Since constructor is declared as protected, a client can not
110 instantiate IntegratorFactory directly. Moreover, since the member
111 function getInstance serves as the only entry of access to
112 IntegratorFactory, this approach fulfills the basic requirement, a
113 single instance. Another consequence of this approach is the
114 automatic destruction since static data are destroyed upon program
115 termination.
116 \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
117
118 class IntegratorFactory {
119 public:
120 static IntegratorFactory*
121 getInstance();
122 protected:
123 IntegratorFactory();
124 private:
125 static IntegratorFactory* instance_;
126 };
127
128 \end{lstlisting}
129
130 \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
131
132 IntegratorFactory::instance_ = NULL;
133
134 IntegratorFactory* getInstance() {
135 if (instance_ == NULL){
136 instance_ = new IntegratorFactory;
137 }
138 return instance_;
139 }
140
141 \end{lstlisting}
142
143
144 \subsection{\label{appendixSection:factoryMethod}Factory Method}
145
146 Categoried as a creational pattern, the Factory Method pattern deals
147 with the problem of creating objects without specifying the exact
148 class of object that will be created. Factory Method is typically
149 implemented by delegating the creation operation to the subclasses.
150 Parameterized Factory pattern where factory method (
151 createIntegrator member function) creates products based on the
152 identifier (see Scheme.~\ref{appendixScheme:factoryDeclaration}). If
153 the identifier has been already registered, the factory method will
154 invoke the corresponding creator (see
155 Scheme.~\ref{appendixScheme:integratorCreator}) which utilizes the
156 modern C++ template technique to avoid excess subclassing.
157
158 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
159
160 class IntegratorFactory {
161 public:
162 typedef std::map<string, IntegratorCreator*> CreatorMapType;
163
164 bool registerIntegrator(IntegratorCreator* creator) {
165 return creatorMap_.insert(creator->getIdent(), creator).second;
166 }
167
168 Integrator* createIntegrator(const string& id, SimInfo* info) {
169 Integrator* result = NULL;
170 CreatorMapType::iterator i = creatorMap_.find(id);
171 if (i != creatorMap_.end()) {
172 result = (i->second)->create(info);
173 }
174 return result;
175 }
176
177 private:
178 CreatorMapType creatorMap_;
179 };
180 \end{lstlisting}
181
182 \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
183
184 class IntegratorCreator {
185 public:
186 IntegratorCreator(const string& ident) : ident_(ident) {}
187
188 const string& getIdent() const { return ident_; }
189
190 virtual Integrator* create(SimInfo* info) const = 0;
191
192 private:
193 string ident_;
194 };
195
196 template<class ConcreteIntegrator>
197 class IntegratorBuilder : public IntegratorCreator {
198 public:
199 IntegratorBuilder(const string& ident)
200 : IntegratorCreator(ident) {}
201 virtual Integrator* create(SimInfo* info) const {
202 return new ConcreteIntegrator(info);
203 }
204 };
205 \end{lstlisting}
206
207 \subsection{\label{appendixSection:visitorPattern}Visitor}
208
209 The visitor pattern is designed to decouple the data structure and
210 algorithms used upon them by collecting related operation from
211 element classes into other visitor classes, which is equivalent to
212 adding virtual functions into a set of classes without modifying
213 their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
214 structure of Visitor pattern which is used extensively in {\tt
215 Dump2XYZ}. In order to convert an OOPSE dump file, a series of
216 distinct operations are performed on different StuntDoubles (See the
217 class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
218 in Scheme.~\ref{appendixScheme:element}). Since the hierarchies
219 remains stable, it is easy to define a visit operation (see
220 Scheme.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
221 Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
222 manages a priority visitor list and handles the execution of every
223 visitor in the priority list on different StuntDoubles.
224
225 \begin{figure}
226 \centering
227 \includegraphics[width=\linewidth]{visitor.eps}
228 \caption[The UML class diagram of Visitor patten] {The UML class
229 diagram of Visitor patten.} \label{appendixFig:visitorUML}
230 \end{figure}
231
232 \begin{figure}
233 \centering
234 \includegraphics[width=\linewidth]{hierarchy.eps}
235 \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
236 the class hierarchy. } \label{oopseFig:hierarchy}
237 \end{figure}
238
239 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
240
241 class StuntDouble { public:
242 virtual void accept(BaseVisitor* v) = 0;
243 };
244
245 class Atom: public StuntDouble { public:
246 virtual void accept{BaseVisitor* v*} {
247 v->visit(this);
248 }
249 };
250
251 class DirectionalAtom: public Atom { public:
252 virtual void accept{BaseVisitor* v*} {
253 v->visit(this);
254 }
255 };
256
257 class RigidBody: public StuntDouble { public:
258 virtual void accept{BaseVisitor* v*} {
259 v->visit(this);
260 }
261 };
262
263 \end{lstlisting}
264
265 \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
266
267 class BaseVisitor{
268 public:
269 virtual void visit(Atom* atom);
270 virtual void visit(DirectionalAtom* datom);
271 virtual void visit(RigidBody* rb);
272 };
273
274 class BaseAtomVisitor:public BaseVisitor{ public:
275 virtual void visit(Atom* atom);
276 virtual void visit(DirectionalAtom* datom);
277 virtual void visit(RigidBody* rb);
278 };
279
280 class CompositeVisitor: public BaseVisitor {
281 public:
282
283 typedef list<pair<BaseVisitor*, int> > VistorListType;
284 typedef VistorListType::iterator VisitorListIterator;
285 virtual void visit(Atom* atom) {
286 VisitorListIterator i;
287 BaseVisitor* curVisitor;
288 for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
289 atom->accept(*i);
290 }
291 }
292
293 virtual void visit(DirectionalAtom* datom) {
294 VisitorListIterator i;
295 BaseVisitor* curVisitor;
296 for(i = visitorScheme.begin();i != visitorScheme.end();++i) {
297 atom->accept(*i);
298 }
299 }
300
301 virtual void visit(RigidBody* rb) {
302 VisitorListIterator i;
303 std::vector<Atom*> myAtoms;
304 std::vector<Atom*>::iterator ai;
305 myAtoms = rb->getAtoms();
306 for(i = visitorScheme.begin();i != visitorScheme.end();++i) {{
307 rb->accept(*i);
308 for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
309 (*ai)->accept(*i);
310 }
311 }
312
313 void addVisitor(BaseVisitor* v, int priority);
314
315 protected:
316 VistorListType visitorList;
317 };
318 \end{lstlisting}
319
320 \section{\label{appendixSection:concepts}Concepts}
321
322 OOPSE manipulates both traditional atoms as well as some objects
323 that {\it behave like atoms}. These objects can be rigid
324 collections of atoms or atoms which have orientational degrees of
325 freedom. A diagram of the class hierarchy is illustrated in
326 Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
327 DirectionalAtom in {\sc OOPSE} have their own names which are
328 specified in the {\tt .md} file. In contrast, RigidBodies are
329 denoted by their membership and index inside a particular molecule:
330 [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
331 on the specifics of the simulation). The names of rigid bodies are
332 generated automatically. For example, the name of the first rigid
333 body in a DMPC molecule is DMPC\_RB\_0.
334 \begin{itemize}
335 \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
336 integrators and minimizers.
337 \item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation.
338 \item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom.
339 \item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf
340 DirectionalAtom}s which behaves as a single unit.
341 \end{itemize}
342
343 \section{\label{appendixSection:syntax}Syntax of the Select Command}
344
345 {\sc OOPSE} provides a powerful selection utility to select
346 StuntDoubles. The most general form of the select command is:
347
348 {\tt select {\it expression}}.
349
350 This expression represents an arbitrary set of StuntDoubles (Atoms
351 or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
352 name expressions, index expressions, predefined sets, user-defined
353 expressions, comparison operators, within expressions, or logical
354 combinations of the above expression types. Expressions can be
355 combined using parentheses and the Boolean operators.
356
357 \subsection{\label{appendixSection:logical}Logical expressions}
358
359 The logical operators allow complex queries to be constructed out of
360 simpler ones using the standard boolean connectives {\bf and}, {\bf
361 or}, {\bf not}. Parentheses can be used to alter the precedence of
362 the operators.
363
364 \begin{center}
365 \begin{tabular}{|ll|}
366 \hline
367 {\bf logical operator} & {\bf equivalent operator} \\
368 \hline
369 and & ``\&'', ``\&\&'' \\
370 or & ``$|$'', ``$||$'', ``,'' \\
371 not & ``!'' \\
372 \hline
373 \end{tabular}
374 \end{center}
375
376 \subsection{\label{appendixSection:name}Name expressions}
377
378 \begin{center}
379 \begin{tabular}{|llp{2in}|}
380 \hline {\bf type of expression} & {\bf examples} & {\bf translation
381 of
382 examples} \\
383 \hline expression without ``.'' & select DMPC & select all
384 StuntDoubles
385 belonging to all DMPC molecules \\
386 & select C* & select all atoms which have atom types beginning with C
387 \\
388 & select DMPC\_RB\_* & select all RigidBodies in DMPC molecules (but
389 only select the rigid bodies, and not the atoms belonging to them). \\
390 \hline expression has one ``.'' & select TIP3P.O\_TIP3P & select the
391 O\_TIP3P
392 atoms belonging to TIP3P molecules \\
393 & select DMPC\_RB\_O.PO4 & select the PO4 atoms belonging to
394 the first
395 RigidBody in each DMPC molecule \\
396 & select DMPC.20 & select the twentieth StuntDouble in each DMPC
397 molecule \\
398 \hline expression has two ``.''s & select DMPC.DMPC\_RB\_?.* &
399 select all atoms
400 belonging to all rigid bodies within all DMPC molecules \\
401 \hline
402 \end{tabular}
403 \end{center}
404
405 \subsection{\label{appendixSection:index}Index expressions}
406
407 \begin{center}
408 \begin{tabular}{|lp{4in}|}
409 \hline
410 {\bf examples} & {\bf translation of examples} \\
411 \hline
412 select 20 & select all of the StuntDoubles belonging to Molecule 20 \\
413 select 20 to 30 & select all of the StuntDoubles belonging to
414 molecules which have global indices between 20 (inclusive) and 30
415 (exclusive) \\
416 \hline
417 \end{tabular}
418 \end{center}
419
420 \subsection{\label{appendixSection:predefined}Predefined sets}
421
422 \begin{center}
423 \begin{tabular}{|ll|}
424 \hline
425 {\bf keyword} & {\bf description} \\
426 \hline
427 all & select all StuntDoubles \\
428 none & select none of the StuntDoubles \\
429 \hline
430 \end{tabular}
431 \end{center}
432
433 \subsection{\label{appendixSection:userdefined}User-defined expressions}
434
435 Users can define arbitrary terms to represent groups of
436 StuntDoubles, and then use the define terms in select commands. The
437 general form for the define command is: {\bf define {\it term
438 expression}}. Once defined, the user can specify such terms in
439 boolean expressions
440
441 {\tt define SSDWATER SSD or SSD1 or SSDRF}
442
443 {\tt select SSDWATER}
444
445 \subsection{\label{appendixSection:comparison}Comparison expressions}
446
447 StuntDoubles can be selected by using comparision operators on their
448 properties. The general form for the comparison command is: a
449 property name, followed by a comparision operator and then a number.
450
451 \begin{center}
452 \begin{tabular}{|l|l|}
453 \hline
454 {\bf property} & mass, charge \\
455 {\bf comparison operator} & ``$>$'', ``$<$'', ``$=$'', ``$>=$'',
456 ``$<=$'', ``$!=$'' \\
457 \hline
458 \end{tabular}
459 \end{center}
460
461 For example, the phrase {\tt select mass > 16.0 and charge < -2}
462 would select StuntDoubles which have mass greater than 16.0 and
463 charges less than -2.
464
465 \subsection{\label{appendixSection:within}Within expressions}
466
467 The ``within'' keyword allows the user to select all StuntDoubles
468 within the specified distance (in Angstroms) from a selection,
469 including the selected atom itself. The general form for within
470 selection is: {\tt select within(distance, expression)}
471
472 For example, the phrase {\tt select within(2.5, PO4 or NC4)} would
473 select all StuntDoubles which are within 2.5 angstroms of PO4 or NC4
474 atoms.
475
476
477 \section{\label{appendixSection:analysisFramework}Analysis Framework}
478
479 \subsection{\label{appendixSection:StaticProps}StaticProps}
480
481 {\tt StaticProps} can compute properties which are averaged over
482 some or all of the configurations that are contained within a dump
483 file. The most common example of a static property that can be
484 computed is the pair distribution function between atoms of type $A$
485 and other atoms of type $B$, $g_{AB}(r)$. {\tt StaticProps} can
486 also be used to compute the density distributions of other molecules
487 in a reference frame {\it fixed to the body-fixed reference frame}
488 of a selected atom or rigid body. Due to the fact that the selected
489 StuntDoubles from two selections may be overlapped, {\tt
490 StaticProps} performs the calculation in three stages which are
491 illustrated in Fig.~\ref{oopseFig:staticPropsProcess}.
492
493 \begin{figure}
494 \centering
495 \includegraphics[width=\linewidth]{staticPropsProcess.eps}
496 \caption[A representation of the three-stage correlations in
497 \texttt{StaticProps}]{This diagram illustrates three-stage
498 processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
499 numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
500 -{}-sele2} respectively, while $C$ is the number of stuntdobules
501 appearing at both sets. The first stage($S_1-C$ and $S_2$) and
502 second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
503 the contrary, the third stage($C$ and $C$) are completely
504 overlapping} \label{oopseFig:staticPropsProcess}
505 \end{figure}
506
507 There are five seperate radial distribution functions availiable in
508 OOPSE. Since every radial distrbution function invlove the
509 calculation between pairs of bodies, {\tt -{}-sele1} and {\tt
510 -{}-sele2} must be specified to tell StaticProps which bodies to
511 include in the calculation.
512
513 \begin{description}
514 \item[{\tt -{}-gofr}] Computes the pair distribution function,
515 \begin{equation*}
516 g_{AB}(r) = \frac{1}{\rho_B}\frac{1}{N_A} \langle \sum_{i \in A}
517 \sum_{j \in B} \delta(r - r_{ij}) \rangle
518 \end{equation*}
519 \item[{\tt -{}-r\_theta}] Computes the angle-dependent pair distribution
520 function. The angle is defined by the intermolecular vector
521 $\vec{r}$ and $z$-axis of DirectionalAtom A,
522 \begin{equation*}
523 g_{AB}(r, \cos \theta) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
524 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
525 \theta_{ij} - \cos \theta)\rangle
526 \end{equation*}
527 \item[{\tt -{}-r\_omega}] Computes the angle-dependent pair distribution
528 function. The angle is defined by the $z$-axes of the two
529 DirectionalAtoms A and B.
530 \begin{equation*}
531 g_{AB}(r, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A} \langle
532 \sum_{i \in A} \sum_{j \in B} \delta(r - r_{ij}) \delta(\cos
533 \omega_{ij} - \cos \omega)\rangle
534 \end{equation*}
535 \item[{\tt -{}-theta\_omega}] Computes the pair distribution in the angular
536 space $\theta, \omega$ defined by the two angles mentioned above.
537 \begin{equation*}
538 g_{AB}(\cos\theta, \cos \omega) = \frac{1}{\rho_B}\frac{1}{N_A}
539 \langle \sum_{i \in A} \sum_{j \in B} \langle \delta(\cos
540 \theta_{ij} - \cos \theta) \delta(\cos \omega_{ij} - \cos
541 \omega)\rangle
542 \end{equation*}
543 \item[{\tt -{}-gxyz}] Calculates the density distribution of particles of type
544 B in the body frame of particle A. Therefore, {\tt -{}-originsele}
545 and {\tt -{}-refsele} must be given to define A's internal
546 coordinate set as the reference frame for the calculation.
547 \end{description}
548
549 The vectors (and angles) associated with these angular pair
550 distribution functions are most easily seen in
551 Fig.~\ref{oopseFig:gofr}
552
553 \begin{figure}
554 \centering
555 \includegraphics[width=3in]{definition.eps}
556 \caption[Definitions of the angles between directional objects]{ \\
557 Any two directional objects (DirectionalAtoms and RigidBodies) have
558 a set of two angles ($\theta$, and $\omega$) between the z-axes of
559 their body-fixed frames.} \label{oopseFig:gofr}
560 \end{figure}
561
562 The options available for {\tt StaticProps} are as follows:
563 \begin{longtable}[c]{|EFG|}
564 \caption{StaticProps Command-line Options}
565 \\ \hline
566 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
567 \endhead
568 \hline
569 \endfoot
570 -h& {\tt -{}-help} & Print help and exit \\
571 -V& {\tt -{}-version} & Print version and exit \\
572 -i& {\tt -{}-input} & input dump file \\
573 -o& {\tt -{}-output} & output file name \\
574 -n& {\tt -{}-step} & process every n frame (default=`1') \\
575 -r& {\tt -{}-nrbins} & number of bins for distance (default=`100') \\
576 -a& {\tt -{}-nanglebins} & number of bins for cos(angle) (default= `50') \\
577 -l& {\tt -{}-length} & maximum length (Defaults to 1/2 smallest length of first frame) \\
578 & {\tt -{}-sele1} & select the first StuntDouble set \\
579 & {\tt -{}-sele2} & select the second StuntDouble set \\
580 & {\tt -{}-sele3} & select the third StuntDouble set \\
581 & {\tt -{}-refsele} & select reference (can only be used with {\tt -{}-gxyz}) \\
582 & {\tt -{}-molname} & molecule name \\
583 & {\tt -{}-begin} & begin internal index \\
584 & {\tt -{}-end} & end internal index \\
585 \hline
586 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
587 \hline
588 & {\tt -{}-gofr} & $g(r)$ \\
589 & {\tt -{}-r\_theta} & $g(r, \cos(\theta))$ \\
590 & {\tt -{}-r\_omega} & $g(r, \cos(\omega))$ \\
591 & {\tt -{}-theta\_omega} & $g(\cos(\theta), \cos(\omega))$ \\
592 & {\tt -{}-gxyz} & $g(x, y, z)$ \\
593 & {\tt -{}-p2} & $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
594 & {\tt -{}-scd} & $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
595 & {\tt -{}-density} & density plot ({\tt -{}-sele1} must be specified) \\
596 & {\tt -{}-slab\_density} & slab density ({\tt -{}-sele1} must be specified)
597 \end{longtable}
598
599 \subsection{\label{appendixSection:DynamicProps}DynamicProps}
600
601 {\tt DynamicProps} computes time correlation functions from the
602 configurations stored in a dump file. Typical examples of time
603 correlation functions are the mean square displacement and the
604 velocity autocorrelation functions. Once again, the selection
605 syntax can be used to specify the StuntDoubles that will be used for
606 the calculation. A general time correlation function can be thought
607 of as:
608 \begin{equation}
609 C_{AB}(t) = \langle \vec{u}_A(t) \cdot \vec{v}_B(0) \rangle
610 \end{equation}
611 where $\vec{u}_A(t)$ is a vector property associated with an atom of
612 type $A$ at time $t$, and $\vec{v}_B(t^{\prime})$ is a different
613 vector property associated with an atom of type $B$ at a different
614 time $t^{\prime}$. In most autocorrelation functions, the vector
615 properties ($\vec{v}$ and $\vec{u}$) and the types of atoms ($A$ and
616 $B$) are identical, and the three calculations built in to {\tt
617 DynamicProps} make these assumptions. It is possible, however, to
618 make simple modifications to the {\tt DynamicProps} code to allow
619 the use of {\it cross} time correlation functions (i.e. with
620 different vectors). The ability to use two selection scripts to
621 select different types of atoms is already present in the code.
622
623 For large simulations, the trajectory files can sometimes reach
624 sizes in excess of several gigabytes. In order to prevent a
625 situation where the program runs out of memory due to large
626 trajectories, \texttt{dynamicProps} will estimate the size of free
627 memory at first, and determine the number of frames in each block,
628 which allows the operating system to load two blocks of data
629 simultaneously without swapping. Upon reading two blocks of the
630 trajectory, \texttt{dynamicProps} will calculate the time
631 correlation within the first block and the cross correlations
632 between the two blocks. This second block is then freed and then
633 incremented and the process repeated until the end of the
634 trajectory. Once the end is reached, the first block is freed then
635 incremented, until all frame pairs have been correlated in time.
636 This process is illustrated in
637 Fig.~\ref{oopseFig:dynamicPropsProcess}.
638
639 \begin{figure}
640 \centering
641 \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
642 \caption[A representation of the block correlations in
643 \texttt{dynamicProps}]{This diagram illustrates block correlations
644 processing in \texttt{dynamicProps}. The shaded region represents
645 the self correlation of the block, and the open blocks are read one
646 at a time and the cross correlations between blocks are calculated.}
647 \label{oopseFig:dynamicPropsProcess}
648 \end{figure}
649
650 The options available for DynamicProps are as follows:
651 \begin{longtable}[c]{|EFG|}
652 \caption{DynamicProps Command-line Options}
653 \\ \hline
654 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
655 \endhead
656 \hline
657 \endfoot
658 -h& {\tt -{}-help} & Print help and exit \\
659 -V& {\tt -{}-version} & Print version and exit \\
660 -i& {\tt -{}-input} & input dump file \\
661 -o& {\tt -{}-output} & output file name \\
662 & {\tt -{}-sele1} & select first StuntDouble set \\
663 & {\tt -{}-sele2} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
664 \hline
665 \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
666 \hline
667 -r& {\tt -{}-rcorr} & compute mean square displacement \\
668 -v& {\tt -{}-vcorr} & compute velocity correlation function \\
669 -d& {\tt -{}-dcorr} & compute dipole correlation function
670 \end{longtable}
671
672 \section{\label{appendixSection:tools}Other Useful Utilities}
673
674 \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
675
676 {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
677 which can be opened by other molecular dynamics viewers such as Jmol
678 and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
679 as follows:
680
681
682 \begin{longtable}[c]{|EFG|}
683 \caption{Dump2XYZ Command-line Options}
684 \\ \hline
685 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
686 \endhead
687 \hline
688 \endfoot
689 -h & {\tt -{}-help} & Print help and exit \\
690 -V & {\tt -{}-version} & Print version and exit \\
691 -i & {\tt -{}-input} & input dump file \\
692 -o & {\tt -{}-output} & output file name \\
693 -n & {\tt -{}-frame} & print every n frame (default=`1') \\
694 -w & {\tt -{}-water} & skip the the waters (default=off) \\
695 -m & {\tt -{}-periodicBox} & map to the periodic box (default=off)\\
696 -z & {\tt -{}-zconstraint} & replace the atom types of zconstraint molecules (default=off) \\
697 -r & {\tt -{}-rigidbody} & add a pseudo COM atom to rigidbody (default=off) \\
698 -t & {\tt -{}-watertype} & replace the atom type of water model (default=on) \\
699 -b & {\tt -{}-basetype} & using base atom type (default=off) \\
700 & {\tt -{}-repeatX} & The number of images to repeat in the x direction (default=`0') \\
701 & {\tt -{}-repeatY} & The number of images to repeat in the y direction (default=`0') \\
702 & {\tt -{}-repeatZ} & The number of images to repeat in the z direction (default=`0') \\
703 -s & {\tt -{}-selection} & By specifying {\tt -{}-selection}=``selection command'' with Dump2XYZ, the user can select an arbitrary set of StuntDoubles to be
704 converted. \\
705 & {\tt -{}-originsele} & By specifying {\tt -{}-originsele}=``selection command'' with Dump2XYZ, the user can re-center the origin of the system around a specific StuntDouble \\
706 & {\tt -{}-refsele} & In order to rotate the system, {\tt -{}-originsele} and {\tt -{}-refsele} must be given to define the new coordinate set. A StuntDouble which contains a dipole (the direction of the dipole is always (0, 0, 1) in body frame) is specified by {\tt -{}-originsele}. The new x-z plane is defined by the direction of the dipole and the StuntDouble is specified by {\tt -{}-refsele}.
707 \end{longtable}
708
709 \subsection{\label{appendixSection:hydrodynamics}Hydro}
710
711 {\tt Hydro} can calculate resistance and diffusion tensors at the
712 center of resistance. Both tensors at the center of diffusion can
713 also be reported from the program, as well as the coordinates for
714 the beads which are used to approximate the arbitrary shapes. The
715 options available for Hydro are as follows:
716 \begin{longtable}[c]{|EFG|}
717 \caption{Hydrodynamics Command-line Options}
718 \\ \hline
719 {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
720 \endhead
721 \hline
722 \endfoot
723 -h & {\tt -{}-help} & Print help and exit \\
724 -V & {\tt -{}-version} & Print version and exit \\
725 -i & {\tt -{}-input} & input dump file \\
726 -o & {\tt -{}-output} & output file prefix (default=`hydro') \\
727 -b & {\tt -{}-beads} & generate the beads only, hydrodynamics calculation will not be performed (default=off)\\
728 & {\tt -{}-model} & hydrodynamics model (supports ``AnalyticalModel'', ``RoughShell'' and ``BeadModel'') \\
729 \end{longtable}