ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2815 by tim, Wed Jun 7 18:34:05 2006 UTC vs.
Revision 2840 by tim, Fri Jun 9 02:54:01 2006 UTC

# Line 1 | Line 1
1   \appendix
2   \chapter{\label{chapt:oopse}Object-Oriented Parallel Simulation Engine}
3  
4 < Designing object-oriented software is hard, and designing reusable
5 < object-oriented scientific software is even harder. Absence of
6 < applying modern software development practices is the bottleneck of
7 < Scientific Computing community\cite{Wilson2006}. For instance, in
4 > Absence of applying modern software development practices is the
5 > bottleneck of Scientific Computing community\cite{Wilson2006}. In
6   the last 20 years , there are quite a few MD packages that were
7   developed to solve common MD problems and perform robust simulations
8   . However, many of the codes are legacy programs that are either
# Line 64 | Line 62 | as \texttt{StatProps} (see Sec.~\ref{appendixSection:S
62   program of the package, \texttt{oopse} and it corresponding parallel
63   version \texttt{oopse\_MPI}, as well as other useful utilities, such
64   as \texttt{StatProps} (see Sec.~\ref{appendixSection:StaticProps}),
65 < \texttt{DynamicProps} (see
66 < Sec.~\ref{appendixSection:appendixSection:DynamicProps}),
67 < \texttt{Dump2XYZ} (see
70 < Sec.~\ref{appendixSection:appendixSection:Dump2XYZ}), \texttt{Hydro}
71 < (see Sec.~\ref{appendixSection:appendixSection:hydrodynamics})
65 > \texttt{DynamicProps} (see Sec.~\ref{appendixSection:DynamicProps}),
66 > \texttt{Dump2XYZ} (see Sec.~\ref{appendixSection:Dump2XYZ}),
67 > \texttt{Hydro} (see Sec.~\ref{appendixSection:hydrodynamics})
68   \textit{etc}.
69  
70   \begin{figure}
# Line 113 | Line 109 | OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \t
109   As one of the latest advanced techniques emerged from
110   object-oriented community, design patterns were applied in some of
111   the modern scientific software applications, such as JMol, {\sc
112 < OOPSE}\cite{Meineke05} and PROTOMOL\cite{Matthey05} \textit{etc}.
113 < The following sections enumerates some of the patterns used in {\sc
114 < OOPSE}.
112 > OOPSE}\cite{Meineke2005} and PROTOMOL\cite{Matthey2005}
113 > \textit{etc}. The following sections enumerates some of the patterns
114 > used in {\sc OOPSE}.
115  
116   \subsection{\label{appendixSection:singleton}Singleton}
121 The Singleton pattern ensures that only one instance of a class is
122 created. All objects that use an instance of that class use the same
123 instance.
117  
118 + The Singleton pattern not only provides a mechanism to restrict
119 + instantiation of a class to one object, but also provides a global
120 + point of access to the object. Currently implemented as a global
121 + variable, the logging utility which reports error and warning
122 + messages to the console in {\sc OOPSE} is a good candidate for
123 + applying the Singleton pattern to avoid the global namespace
124 + pollution.Although the singleton pattern can be implemented in
125 + various ways  to account for different aspects of the software
126 + designs, such as lifespan control \textit{etc}, we only use the
127 + static data approach in {\sc OOPSE}. IntegratorFactory class is
128 + declared as
129 +
130 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}]
131 +
132 + class IntegratorFactory {
133 + public:
134 +  static IntegratorFactory*
135 +  getInstance();
136 + protected:
137 +  IntegratorFactory();
138 + private:
139 +  static IntegratorFactory* instance_;
140 + };
141 +
142 + \end{lstlisting}
143 +
144 + The corresponding implementation is
145 +
146 + \begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}]
147 +
148 + IntegratorFactory::instance_ = NULL;
149 +
150 + IntegratorFactory* getInstance() {
151 +  if (instance_ == NULL){
152 +    instance_ = new IntegratorFactory;
153 +  }
154 +  return instance_;
155 + }
156 +
157 + \end{lstlisting}
158 +
159 + Since constructor is declared as protected, a client can not
160 + instantiate IntegratorFactory directly. Moreover, since the member
161 + function getInstance serves as the only entry of access to
162 + IntegratorFactory, this approach fulfills the basic requirement, a
163 + single instance. Another consequence of this approach is the
164 + automatic destruction since static data are destroyed upon program
165 + termination.
166 +
167   \subsection{\label{appendixSection:factoryMethod}Factory Method}
126 The Factory Method pattern is a creational pattern which deals with
127 the problem of creating objects without specifying the exact class
128 of object that will be created. Factory Method solves this problem
129 by defining a separate method for creating the objects, which
130 subclasses can then override to specify the derived type of product
131 that will be created.
168  
169 + Categoried as a creational pattern, the Factory Method pattern deals
170 + with the problem of creating objects without specifying the exact
171 + class of object that will be created. Factory Method is typically
172 + implemented by delegating the creation operation to the subclasses.
173 + Parameterized Factory pattern where factory method (
174 + createIntegrator member function) creates products based on the
175 + identifier (see List.~\ref{appendixScheme:factoryDeclaration}). If
176 + the identifier has been already registered, the factory method will
177 + invoke the corresponding creator (see List.~\ref{integratorCreator})
178 + which utilizes the modern C++ template technique to avoid excess
179 + subclassing.
180 +
181 + \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of IntegratorFactory class.},label={appendixScheme:factoryDeclaration}]
182 +
183 + class IntegratorFactory {
184 + public:
185 +  typedef std::map<string, IntegratorCreator*> CreatorMapType;
186 +
187 +  bool registerIntegrator(IntegratorCreator* creator) {
188 +    return creatorMap_.insert(creator->getIdent(), creator).second;
189 +  }
190 +
191 +  Integrator* createIntegrator(const string& id, SimInfo* info) {
192 +    Integrator* result = NULL;
193 +    CreatorMapType::iterator i = creatorMap_.find(id);
194 +    if (i != creatorMap_.end()) {
195 +      result = (i->second)->create(info);
196 +    }
197 +    return result;
198 +  }
199 +
200 + private:
201 +  CreatorMapType creatorMap_;
202 + };
203 + \end{lstlisting}
204 +
205 + \begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}]
206 +
207 + class IntegratorCreator {
208 + public:
209 +    IntegratorCreator(const string& ident) : ident_(ident) {}
210 +
211 +    const string& getIdent() const { return ident_; }
212 +
213 +    virtual Integrator* create(SimInfo* info) const = 0;
214 +
215 + private:
216 +    string ident_;
217 + };
218 +
219 + template<class ConcreteIntegrator>
220 + class IntegratorBuilder : public IntegratorCreator {
221 + public:
222 +  IntegratorBuilder(const string& ident)
223 +                   : IntegratorCreator(ident) {}
224 +  virtual  Integrator* create(SimInfo* info) const {
225 +    return new ConcreteIntegrator(info);
226 +  }
227 + };
228 + \end{lstlisting}
229 +
230   \subsection{\label{appendixSection:visitorPattern}Visitor}
134 The purpose of the Visitor Pattern is to encapsulate an operation
135 that you want to perform on the elements of a data structure. In
136 this way, you can change the operation being performed on a
137 structure without the need of changing the classes of the elements
138 that you are operating on.
231  
232 + The visitor pattern is designed to decouple the data structure and
233 + algorithms used upon them by collecting related operation from
234 + element classes into other visitor classes, which is equivalent to
235 + adding virtual functions into a set of classes without modifying
236 + their interfaces. Fig.~\ref{appendixFig:visitorUML} demonstrates the
237 + structure of Visitor pattern which is used extensively in {\tt
238 + Dump2XYZ}. In order to convert an OOPSE dump file, a series of
239 + distinct operations are performed on different StuntDoubles (See the
240 + class hierarchy in Fig.~\ref{oopseFig:hierarchy} and the declaration
241 + in List.~\ref{appendixScheme:element}). Since the hierarchies
242 + remains stable, it is easy to define a visit operation (see
243 + List.~\ref{appendixScheme:visitor}) for each class of StuntDouble.
244 + Note that using Composite pattern\cite{Gamma1994}, CompositVisitor
245 + manages a priority visitor list and handles the execution of every
246 + visitor in the priority list on different StuntDoubles.
247 +
248 + \begin{figure}
249 + \centering
250 + \includegraphics[width=\linewidth]{visitor.eps}
251 + \caption[The UML class diagram of Visitor patten] {The UML class
252 + diagram of Visitor patten.} \label{appendixFig:visitorUML}
253 + \end{figure}
254 +
255 + \begin{figure}
256 + \centering
257 + \includegraphics[width=\linewidth]{hierarchy.eps}
258 + \caption[Class hierarchy for ojects in {\sc OOPSE}]{ A diagram of
259 + the class hierarchy. } \label{oopseFig:hierarchy}
260 + \end{figure}
261 +
262 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}]
263 +
264 + class StuntDouble { public:
265 +  virtual void accept(BaseVisitor* v) = 0;
266 + };
267 +
268 + class Atom: public StuntDouble { public:
269 +  virtual void accept{BaseVisitor* v*} {
270 +    v->visit(this);
271 +  }
272 + };
273 +
274 + class DirectionalAtom: public Atom { public:
275 +  virtual void accept{BaseVisitor* v*} {
276 +    v->visit(this);
277 +  }
278 + };
279 +
280 + class RigidBody: public StuntDouble { public:
281 +  virtual void accept{BaseVisitor* v*} {
282 +    v->visit(this);
283 +  }
284 + };
285 +
286 + \end{lstlisting}
287 +
288 + \begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}]
289 +
290 + class BaseVisitor{
291 + public:
292 +  virtual void visit(Atom* atom);
293 +  virtual void visit(DirectionalAtom* datom);
294 +  virtual void visit(RigidBody* rb);
295 + };
296 +
297 + class BaseAtomVisitor:public BaseVisitor{ public:
298 +  virtual void visit(Atom* atom);
299 +  virtual void visit(DirectionalAtom* datom);
300 +  virtual void visit(RigidBody* rb);
301 + };
302 +
303 + class SSDAtomVisitor:public BaseAtomVisitor{ public:
304 +  virtual void visit(Atom* atom);
305 +  virtual void visit(DirectionalAtom* datom);
306 +  virtual void visit(RigidBody* rb);
307 + };
308 +
309 + class CompositeVisitor: public BaseVisitor {
310 + public:
311 +
312 +  typedef list<pair<BaseVisitor*, int> > VistorListType;
313 +  typedef VistorListType::iterator VisitorListIterator;
314 +  virtual void visit(Atom* atom) {
315 +    VisitorListIterator i;
316 +    BaseVisitor* curVisitor;
317 +    for(i = visitorList.begin();i != visitorList.end();++i) {
318 +      atom->accept(*i);
319 +    }
320 +  }
321 +
322 +  virtual void visit(DirectionalAtom* datom) {
323 +    VisitorListIterator i;
324 +    BaseVisitor* curVisitor;
325 +    for(i = visitorList.begin();i != visitorList.end();++i) {
326 +      atom->accept(*i);
327 +    }
328 +  }
329 +
330 +  virtual void visit(RigidBody* rb) {
331 +    VisitorListIterator i;
332 +    std::vector<Atom*> myAtoms;
333 +    std::vector<Atom*>::iterator ai;
334 +    myAtoms = rb->getAtoms();
335 +    for(i = visitorList.begin();i != visitorList.end();++i) {{
336 +      rb->accept(*i);
337 +      for(ai = myAtoms.begin(); ai != myAtoms.end(); ++ai){
338 +        (*ai)->accept(*i);
339 +    }
340 +  }
341 +
342 +  void addVisitor(BaseVisitor* v, int priority);
343 +
344 +  protected:
345 +    VistorListType visitorList;
346 + };
347 +
348 + \end{lstlisting}
349 +
350   \section{\label{appendixSection:concepts}Concepts}
351  
352   OOPSE manipulates both traditional atoms as well as some objects
353   that {\it behave like atoms}.  These objects can be rigid
354   collections of atoms or atoms which have orientational degrees of
355 < freedom.  Here is a diagram of the class heirarchy:
356 <
357 < %\begin{figure}
358 < %\centering
359 < %\includegraphics[width=3in]{heirarchy.eps}
360 < %\caption[Class heirarchy for StuntDoubles in {\sc oopse}-3.0]{ \\
361 < %The class heirarchy of StuntDoubles in {\sc oopse}-3.0. The
362 < %selection syntax allows the user to select any of the objects that
363 < %are descended from a StuntDouble.} \label{oopseFig:heirarchy}
154 < %\end{figure}
155 <
355 > freedom.  A diagram of the class hierarchy is illustrated in
356 > Fig.~\ref{oopseFig:hierarchy}. Every Molecule, Atom and
357 > DirectionalAtom in {\sc OOPSE} have their own names which are
358 > specified in the {\tt .md} file. In contrast, RigidBodies are
359 > denoted by their membership and index inside a particular molecule:
360 > [MoleculeName]\_RB\_[index] (the contents inside the brackets depend
361 > on the specifics of the simulation). The names of rigid bodies are
362 > generated automatically. For example, the name of the first rigid
363 > body in a DMPC molecule is DMPC\_RB\_0.
364   \begin{itemize}
365   \item A {\bf StuntDouble} is {\it any} object that can be manipulated by the
366   integrators and minimizers.
# Line 162 | Line 370 | Every Molecule, Atom and DirectionalAtom in {\sc OOPSE
370   DirectionalAtom}s which behaves as a single unit.
371   \end{itemize}
372  
165 Every Molecule, Atom and DirectionalAtom in {\sc OOPSE} have their
166 own names which are specified in the {\tt .md} file. In contrast,
167 RigidBodies are denoted by their membership and index inside a
168 particular molecule: [MoleculeName]\_RB\_[index] (the contents
169 inside the brackets depend on the specifics of the simulation). The
170 names of rigid bodies are generated automatically. For example, the
171 name of the first rigid body in a DMPC molecule is DMPC\_RB\_0.
172
373   \section{\label{appendixSection:syntax}Syntax of the Select Command}
374  
375 < The most general form of the select command is: {\tt select {\it
376 < expression}}. This expression represents an arbitrary set of
177 < StuntDoubles (Atoms or RigidBodies) in {\sc OOPSE}. Expressions are
178 < composed of either name expressions, index expressions, predefined
179 < sets, user-defined expressions, comparison operators, within
180 < expressions, or logical combinations of the above expression types.
181 < Expressions can be combined using parentheses and the Boolean
182 < operators.
375 > {\sc OOPSE} provides a powerful selection utility to select
376 > StuntDoubles. The most general form of the select command is:
377  
378 + {\tt select {\it expression}}.
379 +
380 + This expression represents an arbitrary set of StuntDoubles (Atoms
381 + or RigidBodies) in {\sc OOPSE}. Expressions are composed of either
382 + name expressions, index expressions, predefined sets, user-defined
383 + expressions, comparison operators, within expressions, or logical
384 + combinations of the above expression types. Expressions can be
385 + combined using parentheses and the Boolean operators.
386 +
387   \subsection{\label{appendixSection:logical}Logical expressions}
388  
389   The logical operators allow complex queries to be constructed out of
# Line 377 | Line 580 | Fig.~\ref{oopseFig:staticPropsProcess}.
580   \centering
581   \includegraphics[width=\linewidth]{staticPropsProcess.eps}
582   \caption[A representation of the three-stage correlations in
583 < \texttt{StaticProps}]{Three-stage processing in
584 < \texttt{StaticProps}. $S_1$ and $S_2$ are the numbers of selected
585 < stuntdobules from {\tt -{}-sele1} and {\tt -{}-sele2} respectively,
586 < while $C$ is the number of stuntdobules appearing at both sets. The
587 < first stage($S_1-C$ and $S_2$) and second stages ($S_1$ and $S_2-C$)
588 < are completely non-overlapping. On the contrary, the third stage($C$
589 < and $C$) are completely overlapping}
590 < \label{oopseFig:staticPropsProcess}
583 > \texttt{StaticProps}]{This diagram illustrates three-stage
584 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
585 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
586 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
587 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
588 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
589 > the contrary, the third stage($C$ and $C$) are completely
590 > overlapping} \label{oopseFig:staticPropsProcess}
591   \end{figure}
592  
593   The options available for {\tt StaticProps} are as follows:
# Line 462 | Line 665 | incremented, until all frame pairs have been correlate
665   incremented and the process repeated until the end of the
666   trajectory. Once the end is reached, the first block is freed then
667   incremented, until all frame pairs have been correlated in time.
668 + This process is illustrated in
669 + Fig.~\ref{oopseFig:dynamicPropsProcess}.
670  
671 + \begin{figure}
672 + \centering
673 + \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
674 + \caption[A representation of the block correlations in
675 + \texttt{dynamicProps}]{This diagram illustrates block correlations
676 + processing in \texttt{dynamicProps}. The shaded region represents
677 + the self correlation of the block, and the open blocks are read one
678 + at a time and the cross correlations between blocks are calculated.}
679 + \label{oopseFig:dynamicPropsProcess}
680 + \end{figure}
681 +
682   The options available for DynamicProps are as follows:
683   \begin{longtable}[c]{|EFG|}
684   \caption{DynamicProps Command-line Options}
# Line 489 | Line 705 | Dump2XYZ can transform an OOPSE dump file into a xyz f
705  
706   \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
707  
708 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
709 < be opened by other molecular dynamics viewers such as Jmol and
710 < VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
711 < follows:
708 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
709 > which can be opened by other molecular dynamics viewers such as Jmol
710 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
711 > as follows:
712  
713  
714   \begin{longtable}[c]{|EFG|}
# Line 523 | Line 739 | The options available for Hydro are as follows:
739   \end{longtable}
740  
741   \subsection{\label{appendixSection:hydrodynamics}Hydro}
742 < The options available for Hydro are as follows:
742 >
743 > {\tt Hydro} can calculate resistance and diffusion tensors at the
744 > center of resistance. Both tensors at the center of diffusion can
745 > also be reported from the program, as well as the coordinates for
746 > the beads which are used to approximate the arbitrary shapes. The
747 > options available for Hydro are as follows:
748   \begin{longtable}[c]{|EFG|}
749   \caption{Hydrodynamics Command-line Options}
750   \\ \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines