ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2693
Committed: Wed Apr 5 03:44:32 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 7490 byte(s)
Log Message:
minor fix

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2692 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
4 tim 2685
5 tim 2692 As a special discipline of molecular modeling, Molecular dynamics
6     has proven to be a powerful tool for studying the functions of
7     biological systems, providing structural, thermodynamic and
8     dynamical information.
9 tim 2685
10 tim 2693 \section{\label{introSection:classicalMechanics}Classical
11     Mechanics}
12 tim 2685
13 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
14     simulations are carried out by integrating the equations of motion
15     for a given system of particles. There are three fundamental ideas
16     behind classical mechanics. Firstly, One can determine the state of
17     a mechanical system at any time of interest; Secondly, all the
18     mechanical properties of the system at that time can be determined
19     by combining the knowledge of the properties of the system with the
20     specification of this state; Finally, the specification of the state
21     when further combine with the laws of mechanics will also be
22     sufficient to predict the future behavior of the system.
23 tim 2685
24 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
25 tim 2692
26 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
27 tim 2692
28     Newtonian Mechanics suffers from two important limitations: it
29     describes their motion in special cartesian coordinate systems.
30     Another limitation of Newtonian mechanics becomes obvious when we
31     try to describe systems with large numbers of particles. It becomes
32     very difficult to predict the properties of the system by carrying
33     out calculations involving the each individual interaction between
34     all the particles, even if we know all of the details of the
35     interaction. In order to overcome some of the practical difficulties
36     which arise in attempts to apply Newton's equation to complex
37     system, alternative procedures may be developed.
38    
39 tim 2693 \subsection{\label{introSection:halmiltonPrinciple}Hamilton's
40 tim 2692 Principle}
41    
42     Hamilton introduced the dynamical principle upon which it is
43     possible to base all of mechanics and, indeed, most of classical
44     physics. Hamilton's Principle may be stated as follow,
45    
46     The actual trajectory, along which a dynamical system may move from
47     one point to another within a specified time, is derived by finding
48     the path which minimizes the time integral of the difference between
49     the kinetic, $K$, and potential energies, $U$.
50     \begin{equation}
51     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
52 tim 2693 \label{introEquation:halmitonianPrinciple1}
53 tim 2692 \end{equation}
54    
55     For simple mechanical systems, where the forces acting on the
56     different part are derivable from a potential and the velocities are
57     small compared with that of light, the Lagrangian function $L$ can
58     be define as the difference between the kinetic energy of the system
59     and its potential energy,
60     \begin{equation}
61     L \equiv K - U = L(q_i ,\dot q_i ) ,
62     \label{introEquation:lagrangianDef}
63     \end{equation}
64     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
65     \begin{equation}
66 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
67     \label{introEquation:halmitonianPrinciple2}
68 tim 2692 \end{equation}
69    
70 tim 2693 \subsection{\label{introSection:equationOfMotionLagrangian}The
71 tim 2692 Equations of Motion in Lagrangian Mechanics}
72    
73     for a holonomic system of $f$ degrees of freedom, the equations of
74     motion in the Lagrangian form is
75     \begin{equation}
76     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
77     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
78 tim 2693 \label{introEquation:eqMotionLagrangian}
79 tim 2692 \end{equation}
80     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
81     generalized velocity.
82    
83 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
84 tim 2692
85     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
86     introduced by William Rowan Hamilton in 1833 as a re-formulation of
87     classical mechanics. If the potential energy of a system is
88     independent of generalized velocities, the generalized momenta can
89     be defined as
90     \begin{equation}
91     p_i = \frac{\partial L}{\partial \dot q_i}
92     \label{introEquation:generalizedMomenta}
93     \end{equation}
94 tim 2693 The Lagrange equations of motion are then expressed by
95 tim 2692 \begin{equation}
96 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
97     \label{introEquation:generalizedMomentaDot}
98     \end{equation}
99    
100     With the help of the generalized momenta, we may now define a new
101     quantity $H$ by the equation
102     \begin{equation}
103     H = \sum\limits_k {p_k \dot q_k } - L ,
104 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
105     \end{equation}
106     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
107     $L$ is the Lagrangian function for the system.
108    
109 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
110     one can obtain
111     \begin{equation}
112     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
113     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
114     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
115     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
116     \end{equation}
117     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
118     second and fourth terms in the parentheses cancel. Therefore,
119     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
120     \begin{equation}
121     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
122     \right)} - \frac{{\partial L}}{{\partial t}}dt
123     \label{introEquation:diffHamiltonian2}
124     \end{equation}
125     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
126     find
127     \begin{equation}
128     \frac{{\partial H}}{{\partial p_k }} = q_k
129     \label{introEquation:motionHamiltonianCoordinate}
130     \end{equation}
131     \begin{equation}
132     \frac{{\partial H}}{{\partial q_k }} = - p_k
133     \label{introEquation:motionHamiltonianMomentum}
134     \end{equation}
135     and
136     \begin{equation}
137     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
138     t}}
139     \label{introEquation:motionHamiltonianTime}
140     \end{equation}
141    
142     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
143     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
144     equation of motion. Due to their symmetrical formula, they are also
145     known as the canonical equations of motions.
146    
147 tim 2692 An important difference between Lagrangian approach and the
148     Hamiltonian approach is that the Lagrangian is considered to be a
149     function of the generalized velocities $\dot q_i$ and the
150     generalized coordinates $q_i$, while the Hamiltonian is considered
151     to be a function of the generalized momenta $p_i$ and the conjugate
152     generalized coordinate $q_i$. Hamiltonian Mechanics is more
153     appropriate for application to statistical mechanics and quantum
154     mechanics, since it treats the coordinate and its time derivative as
155     independent variables and it only works with 1st-order differential
156     equations.
157    
158 tim 2693 \subsection{\label{introSection:poissonBrackets}Poisson Brackets}
159 tim 2692
160 tim 2693 \subsection{\label{introSection:canonicalTransformation}Canonical
161     Transformation}
162 tim 2692
163 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
164     Mechanics}
165 tim 2692
166     The thermodynamic behaviors and properties of Molecular Dynamics
167     simulation are governed by the principle of Statistical Mechanics.
168     The following section will give a brief introduction to some of the
169     Statistical Mechanics concepts presented in this dissertation.
170    
171 tim 2693 \subsection{\label{introSection::ensemble}Ensemble}
172 tim 2692
173 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
174 tim 2692
175 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
176 tim 2692
177 tim 2693 \section{\label{introSection:correlationFunctions}Correlation Functions}
178 tim 2692
179 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
180    
181 tim 2692 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
182 tim 2685
183 tim 2692 \subsection{\label{introSection:hydroynamics}Hydrodynamics}