ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2694
Committed: Wed Apr 5 21:00:19 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 10876 byte(s)
Log Message:
adding newtonian mechanics

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2    
3 tim 2693 \section{\label{introSection:classicalMechanics}Classical
4     Mechanics}
5 tim 2685
6 tim 2692 Closely related to Classical Mechanics, Molecular Dynamics
7     simulations are carried out by integrating the equations of motion
8     for a given system of particles. There are three fundamental ideas
9     behind classical mechanics. Firstly, One can determine the state of
10     a mechanical system at any time of interest; Secondly, all the
11     mechanical properties of the system at that time can be determined
12     by combining the knowledge of the properties of the system with the
13     specification of this state; Finally, the specification of the state
14     when further combine with the laws of mechanics will also be
15     sufficient to predict the future behavior of the system.
16 tim 2685
17 tim 2693 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 tim 2694 The discovery of Newton's three laws of mechanics which govern the
19     motion of particles is the foundation of the classical mechanics.
20     Newton¡¯s first law defines a class of inertial frames. Inertial
21     frames are reference frames where a particle not interacting with
22     other bodies will move with constant speed in the same direction.
23     With respect to inertial frames Newton¡¯s second law has the form
24     \begin{equation}
25     F = \frac {dp}{dt} = \frac {mv}{dt}
26     \label{introEquation:newtonSecondLaw}
27     \end{equation}
28     A point mass interacting with other bodies moves with the
29     acceleration along the direction of the force acting on it. Let
30     $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31     $F_ji$ be the force that particle $j$ exerts on particle $i$.
32     Newton¡¯s third law states that
33     \begin{equation}
34     F_ij = -F_ji
35     \label{introEquation:newtonThirdLaw}
36     \end{equation}
37 tim 2692
38 tim 2694 Conservation laws of Newtonian Mechanics play very important roles
39     in solving mechanics problems. The linear momentum of a particle is
40     conserved if it is free or it experiences no force. The second
41     conservation theorem concerns the angular momentum of a particle.
42     The angular momentum $L$ of a particle with respect to an origin
43     from which $r$ is measured is defined to be
44     \begin{equation}
45     L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46     \end{equation}
47     The torque $\tau$ with respect to the same origin is defined to be
48     \begin{equation}
49     N \equiv r \times F \label{introEquation:torqueDefinition}
50     \end{equation}
51     Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52     \[
53     \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54     \dot p)
55     \]
56     since
57     \[
58     \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59     \]
60     thus,
61     \begin{equation}
62     \dot L = r \times \dot p = N
63     \end{equation}
64     If there are no external torques acting on a body, the angular
65     momentum of it is conserved. The last conservation theorem state
66     that if all forces are conservative, Energy $E = T + V$ is
67     conserved. All of these conserved quantities are important factors
68     to determine the quality of numerical integration scheme for rigid
69     body \cite{Dullweber1997}.
70    
71 tim 2693 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
72 tim 2692
73     Newtonian Mechanics suffers from two important limitations: it
74     describes their motion in special cartesian coordinate systems.
75     Another limitation of Newtonian mechanics becomes obvious when we
76     try to describe systems with large numbers of particles. It becomes
77     very difficult to predict the properties of the system by carrying
78     out calculations involving the each individual interaction between
79     all the particles, even if we know all of the details of the
80     interaction. In order to overcome some of the practical difficulties
81     which arise in attempts to apply Newton's equation to complex
82     system, alternative procedures may be developed.
83    
84 tim 2694 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
85 tim 2692 Principle}
86    
87     Hamilton introduced the dynamical principle upon which it is
88     possible to base all of mechanics and, indeed, most of classical
89     physics. Hamilton's Principle may be stated as follow,
90    
91     The actual trajectory, along which a dynamical system may move from
92     one point to another within a specified time, is derived by finding
93     the path which minimizes the time integral of the difference between
94 tim 2694 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
95 tim 2692 \begin{equation}
96     \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
97 tim 2693 \label{introEquation:halmitonianPrinciple1}
98 tim 2692 \end{equation}
99    
100     For simple mechanical systems, where the forces acting on the
101     different part are derivable from a potential and the velocities are
102     small compared with that of light, the Lagrangian function $L$ can
103     be define as the difference between the kinetic energy of the system
104     and its potential energy,
105     \begin{equation}
106     L \equiv K - U = L(q_i ,\dot q_i ) ,
107     \label{introEquation:lagrangianDef}
108     \end{equation}
109     then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
110     \begin{equation}
111 tim 2693 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
112     \label{introEquation:halmitonianPrinciple2}
113 tim 2692 \end{equation}
114    
115 tim 2694 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
116 tim 2692 Equations of Motion in Lagrangian Mechanics}
117    
118     for a holonomic system of $f$ degrees of freedom, the equations of
119     motion in the Lagrangian form is
120     \begin{equation}
121     \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
122     \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
123 tim 2693 \label{introEquation:eqMotionLagrangian}
124 tim 2692 \end{equation}
125     where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
126     generalized velocity.
127    
128 tim 2693 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
129 tim 2692
130     Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
131     introduced by William Rowan Hamilton in 1833 as a re-formulation of
132     classical mechanics. If the potential energy of a system is
133     independent of generalized velocities, the generalized momenta can
134     be defined as
135     \begin{equation}
136     p_i = \frac{\partial L}{\partial \dot q_i}
137     \label{introEquation:generalizedMomenta}
138     \end{equation}
139 tim 2693 The Lagrange equations of motion are then expressed by
140 tim 2692 \begin{equation}
141 tim 2693 p_i = \frac{{\partial L}}{{\partial q_i }}
142     \label{introEquation:generalizedMomentaDot}
143     \end{equation}
144    
145     With the help of the generalized momenta, we may now define a new
146     quantity $H$ by the equation
147     \begin{equation}
148     H = \sum\limits_k {p_k \dot q_k } - L ,
149 tim 2692 \label{introEquation:hamiltonianDefByLagrangian}
150     \end{equation}
151     where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
152     $L$ is the Lagrangian function for the system.
153    
154 tim 2693 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
155     one can obtain
156     \begin{equation}
157     dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
158     \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
159     L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
160     L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
161     \end{equation}
162     Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
163     second and fourth terms in the parentheses cancel. Therefore,
164     Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
165     \begin{equation}
166     dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
167     \right)} - \frac{{\partial L}}{{\partial t}}dt
168     \label{introEquation:diffHamiltonian2}
169     \end{equation}
170     By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
171     find
172     \begin{equation}
173     \frac{{\partial H}}{{\partial p_k }} = q_k
174     \label{introEquation:motionHamiltonianCoordinate}
175     \end{equation}
176     \begin{equation}
177     \frac{{\partial H}}{{\partial q_k }} = - p_k
178     \label{introEquation:motionHamiltonianMomentum}
179     \end{equation}
180     and
181     \begin{equation}
182     \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
183     t}}
184     \label{introEquation:motionHamiltonianTime}
185     \end{equation}
186    
187     Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
188     Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
189     equation of motion. Due to their symmetrical formula, they are also
190 tim 2694 known as the canonical equations of motions \cite{Goldstein01}.
191 tim 2693
192 tim 2692 An important difference between Lagrangian approach and the
193     Hamiltonian approach is that the Lagrangian is considered to be a
194     function of the generalized velocities $\dot q_i$ and the
195     generalized coordinates $q_i$, while the Hamiltonian is considered
196     to be a function of the generalized momenta $p_i$ and the conjugate
197     generalized coordinate $q_i$. Hamiltonian Mechanics is more
198     appropriate for application to statistical mechanics and quantum
199     mechanics, since it treats the coordinate and its time derivative as
200     independent variables and it only works with 1st-order differential
201 tim 2694 equations\cite{Marion90}.
202 tim 2692
203 tim 2694 When studying Hamiltonian system, it is more convenient to use
204     notation
205     \begin{equation}
206     r = r(q,p)^T
207     \end{equation}
208     and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209     \begin{equation}
210     J = \left( {\begin{array}{*{20}c}
211     0 & I \\
212     { - I} & 0 \\
213     \end{array}} \right)
214     \label{introEquation:canonicalMatrix}
215     \end{equation}
216     Thus, Hamiltonian system can be rewritten as,
217     \begin{equation}
218     \frac{d}{{dt}}r = J\nabla _r H(r)
219     \label{introEquation:compactHamiltonian}
220     \end{equation}
221     where $I$ is an identity matrix and $J$ is a skew-symmetrix matrix
222     ($ J^T = - J $).
223 tim 2692
224 tim 2694 %\subsection{\label{introSection:canonicalTransformation}Canonical
225 tim 2693 Transformation}
226 tim 2692
227 tim 2694 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228    
229     \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230    
231     \subsection{\label{Construction of Symplectic Methods}}
232    
233 tim 2693 \section{\label{introSection:statisticalMechanics}Statistical
234     Mechanics}
235 tim 2692
236 tim 2694 The thermodynamic behaviors and properties of Molecular Dynamics
237 tim 2692 simulation are governed by the principle of Statistical Mechanics.
238     The following section will give a brief introduction to some of the
239     Statistical Mechanics concepts presented in this dissertation.
240    
241 tim 2693 \subsection{\label{introSection::ensemble}Ensemble}
242 tim 2692
243 tim 2693 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
244 tim 2692
245 tim 2694
246     \section{\label{introSection:molecularDynamics}Molecular Dynamics}
247    
248     As a special discipline of molecular modeling, Molecular dynamics
249     has proven to be a powerful tool for studying the functions of
250     biological systems, providing structural, thermodynamic and
251     dynamical information.
252    
253     \subsection{\label{introSec:mdInit}Initialization}
254    
255     \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
256    
257 tim 2693 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
258 tim 2692
259 tim 2694 A rigid body is a body in which the distance between any two given
260     points of a rigid body remains constant regardless of external
261     forces exerted on it. A rigid body therefore conserves its shape
262     during its motion.
263    
264     Applications of dynamics of rigid bodies.
265    
266    
267     %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
268    
269 tim 2693 \section{\label{introSection:correlationFunctions}Correlation Functions}
270 tim 2692
271 tim 2685 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
272    
273 tim 2692 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
274 tim 2685
275 tim 2692 \subsection{\label{introSection:hydroynamics}Hydrodynamics}